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Abstract

Morse-Bott functions generalize Morse functions, permitting the critical
points of a function to form submanifolds, rather than being isolated. In
fact, many natural maps are Morse-Bott, thanks to symmetries. In this
thesis, we develop the Morse-Bott homology of a Morse-Bott function
and show that this homology is isomorphic to the singular homology.
We apply this method to make computations towards the homology of
the special orthogonal groups, SO(n).
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Chapter 1

Introduction

Morse theory provides a way to compute the singular homology of a smooth
manifold using a smooth function with isolated critical points, called Morse
function. Morse-Bott functions is a generalization of Morse functions, per-
mitting the critical points to form submanifolds. In this thesis, we develop
a way to compute the singular homology of a manifold using a Morse-Bott
function, following Banyaga and Hurtubise’s construction in [1].

We then use the developed theory to compute the homology of the special
orthogonal group, SO(n). We define the Morse-Bott function f : SO(n) → R

defined by f (X) = Xnn (the lower-right coordinate). This function has two
critical submanifolds, each diffeomorphic to SO(n − 1). In particular, we
show that the short sequence

0 → Hk(SO(2n − 1)) → Hk(SO(2n)) → Hk−2n+1(SO(2n − 1)) → 0.

is exact (Theorem 3.18). In addition, we show a recursive formula for the
mod 2 homology of SO(n) (Theorem 3.23):

Hk(SO(n); Z2) ∼= Hk(SO(n − 1))⊕ Hk−n+1(SO(n − 1)).

Overview

Morse-Bott Homology

Let B be a topological space. For every integer k ≥ 0, the kth-homology
group Hk(B) is an abelian group that is a topological invariant of B. Roughly
speaking, the rank of Hk(B) measures the number of k-dimensional holes.

There are multiple ways to compute the homology groups of a topological
space B. In all cases, the process is similar: For every integer k ≥ 0, we
associate an abelian group Ck, which is derived from B in some way. Then,
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for every k, we define a linear map ∂ : Ck → Ck−1 such that

∂ ◦ ∂ : Ck → Ck−2

is the zero map for every k ≥ 0. This pair (C•, ∂) is called a chain complex.
The homology groups of the chain complex (C•, ∂) are defined as

Hk(C•, ∂) :=
ker (∂ : Ck → Ck−1)

Im (∂ : Ck → Ck−1)
.

The most generic homology theory is the singular homology. In this case, we
define ∆k ∈ Rk+1, the k-dimensional simplex, to be k-dimensional polygon
whose vertices are

v0 = (1, 0, . . . , 0), v1 = (0, 1, 0, . . . , 0), . . . , vk+1 = (0, . . . , 0, 1)

and call a continuous map σ : ∆k → B a singular chain of degree k. We define
Sk(B) to be the free abelian group generated by all singular chains of degree
k. The boundary operator ∂ : Sk(B) → Sk−1(B) is defined on generators by

∂(σ) =
k+1

∑
i=1

(−1)i σ|[v1,...,v̂i ,...,vk+1]

where [v1, . . . , v̂i, . . . , vk+1] is the face of ∆k containing all vertices except vi.
For more details about singular homology, see Chapter 2 of [2].

If M is a compact orientable manifold, one can use Morse homology to
compute the homology groups of M. A smooth function f : M → R is called
Morse if in local coordinates, the Hessian matrix

Hessx( f ) =
(

d2 f
dxidxj

)
ij
(x)

of every critical point

x ∈ Crit( f ) := {x ∈ M | d fx ≡ 0}

has full rank. In this case, we define the index of x ∈ Crit( f ) to be the
number of negative eigenvalues of Hessx( f ) and set B̂k to be the set of all
critical points of index k. Given a metric g on M, we define φt(x) to be the
flow of −∇ f . Then, we define Ck( f ) to be the free abelian group generated
by B̂k, and we define ∂ : Ck( f ) → Ck−1( f ) on generators by

∂(p) = ∑
q∈B̂k−1

n(p, q)q

where, informally speaking, n(p, q) counts the signed number of flow lines
from p to q. The Morse homology theorem states that (Ck( f ), ∂) is a chain
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complex whose homology is the same as the singular homology and, in
particular, does not depend on the function f . Some references for Morse
homology include [3], [4], [5] and [6].

The Kupka-Smale theorem [7, Theorem 3.1] states that the set of Morse
functions is dense in the space of all smooth functions. In particular, every
smooth function can be perturbed to a Morse function. However, in some
cases, a natural function might not be Morse, and some properties of the
functions might be lost in perturbation. For example, consider the two
dimensional torus T2 = R2/Z2 with coordinates induced from R2. Let
f : T2 → R be defined by f (x, y) = cos 2πx. Then the critical points of f are

Crit( f ) =
{
(x, y) ∈ T2 | x = 0,

1
2

}
which is not an isolated set. This function is invariant under the R-action
t · (x, y) 7→ (x, y + t), but no Morse function is invariant under this action.

Another example, which is discussed in detail in Chapter 3 of this thesis and
was taken from Section 5 of [8], is the function f : SO(n) → R, defined by
f (X) = Xnn (the lower-right coordinate of X). In this case, Crit( f ) consists
of two copies of SO(n − 1).

A generalization of a Morse function, called a Morse-Bott function, is a
function f : M → R such that Crit( f ) is not a discrete set, but rather a finite
union of submanifolds of M, and the non-degeneracy condition is replaced
by a similar condition (Definition 2.1).

There are few different approaches for Morse-Bott homology, all described in
detail in [9]. In addition to perturbing the function, cascade lines can also be
used to compute the Morse-Bott homology of f . More details on cascades
can be found in [10].

The approach we have chosen to focus on this thesis is rather different. In this
approach, a chain complex (C•(B̂i), ∂0) is assigned to each index of critical
points, and a map

∂j : Ck(B̂i) → Ck+j−1(B̂i−j)

is defined for every j = 1, . . . , m and k = 0, . . . , m. The chain complex
(Ck( f ), ∂) is then defined by

Ck( f ) :=
k⊕

i=0

Ci(B̂k−i)
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and ∂ =
⊕k

i=0 ∂j : Ck( f ) → Ck−1( f ). The complex can be pictured as follows:

. . . ⊕

. . . C1(B̂2) C0(B̂2) 0

⊕ ⊕

. . . C2(B̂1) C1(B̂1) C0(B̂1) 0

⊕ ⊕ ⊕

. . . C3(B̂0) C2(B̂0) C1(B̂0) C0(B̂0) 0

∥ ∥ ∥ ∥

. . . C3( f ) C2( f ) C1( f ) C0( f ) 0

∂0

∂1

∂2

∂0

∂1

∂2
∂0

∂1

∂0

∂1

∂0

∂1

∂0 ∂0 ∂0

∂ ∂ ∂ ∂

An early development of Morse-Bott theory can be found in [11], where
Austin and Braam used differential forms to construct Morse-Bott cohomol-
ogy, and showed that it is isomorphic to the De Rham cohomology. Other
approaches can also be found in [12], [13], [14], [15], [1], and [16]. In this
thesis, we focus on the approach of Banyaga and Hurtubise in [1].

In [1], Banyaga and Hurtubise define the singular N-cube homology, where
Ck is defined to be the set of all k-faces of IN (for some N large enough),
and the group Sk(B) is generated by all continuous maps σ : P → B and
P ∈ Ck. Then, the subgroup Dk(B) ⊂ Sk(B) of degenerate singular N-cube
chains is defined by some degeneracy conditions, described in Definition
2.10. The chain complex (S•(B)/D•(B), ∂) is called the singular N-cube chain
complex and its homology groups are shown to be isomorphic to the singular
homology.

For the boundary maps ∂j : Cp(B̂i) → Cp+j−1( ˆBi−j), a construction named
fibered product is utilized. Given maps σi : Pi → B (i = 1, 2), the fibered
product of σ1 and σ2 is defined as

P1 ×σ1,B,σ2 P2 := {(x, y) ∈ P1 × P2 | σ1(x) = σ2(y)}.

If M(B̂i, B̂i−j) is the space of all piecewise gradient flow lines from B̂i to B̂i−j
and

e− : M(B̂i, B̂i−j) → B̂i, e+ : M(B̂i, B̂i−j) → B̂i−j

are the beginning and endpoints maps of the piecewise gradient flow lines,
one can describe

P ×σP,B̂i ,e− M(B̂i, B̂i−j) := P ×B̂i
M(B̂i, B̂i−j)
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as the space of all possible ways to get from P to B̂i−j through σP : P → B̂i.
Therefore, if σP is a smooth singular chain, ∂j(σP) is defined to be the singular
chain

∂j(σP) : P ×B̂i
M(B̂i, B̂i−j)

π2−→ M(B̂i, B̂i−j)
e+−→ B̂i−j.

Then, S∞
p (B̂i) is defined to be the free abelian group generated by smooth

maps σP : P → B̂i where P is a p-face of In, but ∂j(σP) is also added as
generators of S∞

p+j−1(B̂i−j), so

∂j : S∞
k (B̂i) → S∞

p+j−1(B̂i−j)

is well-defined.

Afterwards, the subgroup of degenerate singular chains Dk∞(B̂i) is defined
by some degeneracy conditions, including the conditions for degenerate
singular N-cube chains, but also for identifying ∂j(σP) with a smooth singular
N-cube chain. The chain complex (Ck(B̂i), ∂0) is defined by

Ck(B̂i) := S∞
k (B̂i)/D∞

k (B̂i)

and
∂0 : S∞

k (B̂i) → S∞
k−1(B̂i)

is (−1)k times the boundary operator defined on smooth singular N-cube
chains. Then, it is shown that (Ck( f ), ∂) is a chain complex whose homology
does not depend on f (Theorem 2.44).

If f : M → R is a constant function (Example 2.40), then B̂0 = M and
B̂i = ∅ for i ≥ 0. The chain complex (Ck( f ), ∂) is then the smooth version of
the singular N-cube chain complex, whose homology is isomorphic to the
singular homology.

On the other hand, if f : M → R is a Morse-Smale function (Example 2.41),
then the chain complex (Ck( f ), ∂) is the Morse-Smale chain complex, and
therefore the homology of (Ck( f ), ∂) is isomorphic to the Morse homology.
Hence, since the homology is independent of the function, Theorem 2.44
gives another proof of the Morse homology theorem.

Orthogonal Groups

The orthogonal group consists of all matrices of size n × n whose rows are unit
vectors, orthogonal to each other. Formally,

O(n) :=
{

X ∈ Mn×n (R) | XXt = In
}

where In is the identity matrix. The special orthogonal group is the subgroup
of all orthogonal matrices with determinant 1. That is,

SO(n) := {X ∈ O(n) | det X = 1} .
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O(n) has two connected components, each homeomorphic to SO(n). Thus,
computing the homology groups of SO(n) gives also the homology groups
of O(n) by

H•(O(n)) = H•(SO(n))⊕ H•(SO(n)).

In Chapter 3 we compute the homology groups of SO(n). We apply the
system defined in Chapter 2 with methods from [8]. As in [8], we define the
Morse-Bott function f : M → R, f (X) = Xnn which takes the lower-right
coordinate of X. The function has two critical submanifolds with indices
0 and n − 1 denoted by F0 and Fn−1 respectively, each diffeomorphic to
SO(n − 1). Therefore, one can compute the homology groups of SO(n)
recursively using the Morse-Bott complex of f .

The idea for the computations is inspired by Section 5 of [8]. We first show
that the space M(Fn−1, F0) is diffeomorphic to SO(n − 1)× Sn−2. Using this
identification, the beginning and endpoint maps e−, e+ satisfy

e−(X, v) = e−(X,−v), e+(X, v) = e+(X,−v)

for X ∈ SO(n − 1) and v ∈ Sn−2. Then, for every cycle σ ∈ Cp(Fn−1), we find
a p-dimensional CW-complex P′, a map

φ : P′ × Sn−2 (x,v) 7→(x,[v])−−−−−−−→ P′ × RPn−2 → Fn−1

and a cycle σ′ ∈ Sp+n−2
(

P′ × Sn−2) such that φ∗(σ′) = ∂n−1(σ). We then
show that

φ∗ : Hp+n−2(P′ × Sn−2) → Hp+n−2(F0)

is the zero map if n is even (or with Z2 coefficients) and therefore, (∂n−1)∗ :
Hp(Fn−1) → Hp+n−2(F0) is the zero map on homology. Using this fact, we
get our results.

Our main result is Theorem 3.18, which gives the short exact sequence

0 → Hk(SO(2n − 1)) → Hk(SO(2n)) → Hk−2n+1(SO(2n − 1)) → 0.

Although it might be possible to deduce this short exact sequence from
other computations of the homology groups of SO(n), such as in [17] and [2,
Chapter 3D], this is the first time the short exact sequence is written explicitly.

In addition, we compute the mod 2 homology groups of SO(n). Theorem
3.23 states that

Hk(SO(n); Z2) ∼= Hk(SO(n − 1); Z2)⊕ Hk−n+1(SO(n − 1); Z2).

This theorem is already known. Our proof is very similar to the one in [8,
Section 5], where they used the same Morse-Bott function but with different
Morse-Bott system. Hatcher [2, Theorem 3D.1] gives another proof using cell
structures, and [18, Theorem 3] provides a proof using Morse functions.

6



Structure Of The Thesis

In Chapter 2 we construct Banyaga and Hurtubise’s Morse-Bott system, as
described in [1]. We start in Section 2.1, in which we define a Morse-Bott
function and state the required transversality conditions. These requirements
are fulfilled in most cases, including the constant function, Morse-Smale
functions, and the function discussed in Section 3.3.

In Section 2.2 we construct the framework we later use for the boundary
operator ∂0. We start in Subsection 2.2.1, where we formalize a singular
topology framework, of which the singular homology is a special case. In
Subsections 2.2.2 and 2.2.3, we define the N-cube singular homology using
the singular homology framework. In Subsections 2.2.4 and 2.2.5, we extend
the boundary operator to fibered products and compactificated moduli spaces
as well.

We define our chain complex in Section 2.3. The chain complex consists of
smooth maps from spaces defined in Section 2.2. We also add degeneracy
conditions in Subsection 2.3.4 and define the Morse-Bott homology in Subsec-
tion 2.3.5. In Section 2.4 we prove that the homology of the chain complex is
independent on the choice of the function, and in particular isomorphic to the
singular homology. In the last section in Chapter 2, we define the Morse-Bott
homology with coefficients in a field, and show that it is isomorphic to the
singular homology with the same coefficients.

In Chapter 3, we use the Morse-Bott-Smale chain complex defined in Chapter
2 to compute the homology groups of SO(n). To our knowledge, this is
the first application of this Morse-Bott theory. Section 3.1 is dedicated for
linear Morse-Bott functions on SO(n), of which our function f (X) = Xnn is
a special case. In Section 3.2 we define the mapping cone, and show that
the chain complex of simple Morse-Bott functions (that is, only two critical
submanifolds) can be described as a mapping cone. In Section 3.3 we put
everything together to compute the homology groups of SO(n).

Further Directions

In this thesis we computed the homology groups of SO(2n) using the homol-
ogy groups of SO(2n − 1). However, the odd case is not discussed in this
thesis at all. Computing the homology groups of SO(2n − 1) is a natural con-
tinuation of this thesis. In addition, the framework and ideas we developed
might be applicable for other cases as well, like the unitary group U(n).

Another possible direction is trying to soften the transversality condition.
Currently, there are Morse-Bott functions (Example 2.7) which cannot meet
the required transversality conditions under any Riemannian metric.
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Chapter 2

Morse-Bott Functions

2.1 Morse-Bott Functions and Transversality

In this section we define a Morse-Bott function. Then, we define the stable
and unstable manifolds of a critical submanifold, and state the transversality
conditions required for these manifolds. The stable and unstable manifolds
are key parts of defining the flow lines and boundary maps later. The section
follows Section 3 of [1] closely.

Let (M, g) be an m-dimensional compact Riemannian manifold and f ∈
C∞(M). We call Crit( f ) := {p ∈ M| d fp ≡ 0} the set of critical points of f .
Assume now that Crit( f ) =

⊔n
i=1 Bi is a finite union of connected manifolds

Bi of M, called critical submanifolds. Let B be a critical submanifold. Note that
d f |B ≡ 0 and B is connected, so f is constant on B.

For every p ∈ B, the tangent space Tp M splits to the tangent space in B and
νp(B) (the normal bundle of B in M at p). i.e.

Tp M = TpB ⊕ νp(B).

The normal bundle of B is defined as

ν∗(B) =
⋃
p∈B

νp(B)

and is a vector bundle of rank (m − dim B) of B [19, Proposition 2.16].

The Hessian of f at p ∈ M is the symmetric bilinear form

Hessp( f ) : Tp M × Tp M → R

that is defined by Hessp( f )(V, W) = V ·
(
W̃ · f

)
, where W̃ is any extension

of W to M. If V ∈ TpB, then

Hessp( f )(W, V) = Hessp( f )(V, W) = V ·
(
W̃ · f

)∣∣
p = 0

8



2.1. Morse-Bott Functions and Transversality

because W̃ · f
∣∣
q = 0 for every q ∈ B. Therefore Hessp( f ) reduces to a

symmetric bilinear form:

Hessν
p( f ) : νp(B)× νp(B) → R,

which is called the normal Hessian of f at p.

Definition 2.1 f : M → R is called Morse-Bott if Crit( f ) is a disjoint union of
connected submanifolds of M and Hessν

p is non-degenerate for every critical
submanifold B ⊂ Crit( f ) and p ∈ B.

We can generalize Morse lemma to critical submanifolds:

Theorem 2.2 (Morse-Bott Lemma) [20, Theorem 2] Let f : M → R be Morse-
Bott. Then for every critical submanifold B ⊂ Crit( f ) and p ∈ B, there is a local
chart (U, φ) around p such that

f (x) = f (B)− x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

i+j

where i + j = dim νp(B). Such a chart is called a Morse-Bott chart of p.

We call λp := i the index of p and denote λ∗
p := j. The index λp can be also

described as the number of negative eigenvalues of Hessp( f ). Since λp and
λ∗

p are constant on a Morse-Bott chart and B is connected, λp and λ∗
p are

constant on B. Hence, we can define indices for B as

λB := λp, λ∗
B = λ∗

p

for some p ∈ B. In addition, Morse-Bott Lemma induces a local splitting of
the normal bundle ν∗(B) to

ν∗(B) = ν−∗ (B)⊕ ν+∗ (B)

where ν−∗ (B) and ν+∗ (B) are defined in a Morse-Bott chart U as

ν−∗ (B) = span
{

∂

∂x1
, . . . ,

∂

∂xi

}
, ν−∗ (B) = span

{
∂

∂xi+1
, . . . ,

∂

∂xi+j

}
.

Definition 2.3 Let f : M → R be Morse-Bott. A pseudo-gradient on M is a
vector field X ∈ Γ(TM) satisfying:

• For every p ∈ Crit( f ) there is a Morse-Bott chart U around p so that
X = −∇ f .

• For every q ∈ M \ Crit( f ), (X · f )|q < 0.

Observe that for every p ∈ M

(−∇ f )(p) · f = d fp(−∇ f ) = ⟨∇ f (p), (−∇ f )(p)⟩ = − |∇ f (p)|2 ≤ 0

and (−∇ f )(p) · f = 0 if and only if ∇ f (p) = 0. That is, p ∈ Crit( f ).
Therefore, −∇ f is a pseudo-gradient.
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2.1. Morse-Bott Functions and Transversality

Definition 2.4 Fix a pseudo-gradient X. Let φt be the flow of X (note that
φt is defined for all time because M is compact). We define the stable and
unstable manifolds of p ∈ Crit( f ) the same way as for Morse functions:

Ws(p) =
{

x ∈ M| lim
t→∞

φt(x) = p
}

Wu(p) =
{

x ∈ M| lim
t→−∞

φt(x) = p
}

And for a critical submanifold B ∈ Crit( f ):

Ws(B) =
⋃
p∈B

Ws(p)

Wu(B) =
⋃
p∈B

Wu(p)

Theorem 2.5 [11, Proposition 3.2] There are smooth injective immersions

E+ : ν+∗ (B) → M

and
E− : ν−∗ (B) → M

with Ws(B) and Wu(B) as their images.
In addition, there are smooth endpoint maps

e+ : Ws(B) → B and e− : Wu(B) → B

given by e±(x) = limt→±∞ φt(x) which have the structure of a locally trivial fiber
bundle when restricted to a neighborhood of B.

We say that the pair ( f , X) consists of a Morse-Bott function f : M → R

and a pseudo-gradient X is Morse-Bott-Smale if Wu(p) and Ws(B′) intersect
transversely for every two critical submanifolds B, B′ ⊂ Crit( f ) and p ∈ B.
We say that f is Morse-Bott-Smale if ( f ,−∇ f ) is a Morse-Bott-Smale pair.

If f is a Morse function, then −∇ f can always be approximated by a pseudo-
gradient X such that ( f , X) is a Morse-Smale pair [21, Theorem A]. However,
there exist Morse-Bott functions that are not Morse-Bott-Smale with respect
to any Riemannian metric, or any gradient-like vector field (see Example 2.7).

If f : M → R is Morse-Bott-Smale, then the space

W(B, B′) := Wu(B) ⋔ Ws(B′)

is a submanifold, as it is a transverse intersection of two manifolds. We
denote b = dim B, b′ = dim B′. Then

dim Wu(B) = b + λB,

10



2.2. Topological Chains and Fibered Products

dim Ws(B′) = b′ + λ∗
B′ = m − λB′ ,

and if W(B, B′) ̸= ∅, then dim W(B, B′) = λB − λB′ + b.

A Morse-Bott function is called weakly self-indexing if for every pair of critical
submanifolds B ̸= B′ such that λB ≤ λB′ , W(B, B′) = ∅, i.e. the index is
strictly decreasing along flow lines.

Lemma 2.6 Let f : M → R be Morse-Bott-Smale. Then f is weakly self-indexing
[1, Lemma 3.6].

Proof Let B, B′ be critical submanifolds such that W(B, B′) ̸= ∅. Then there
is x ∈ B, W(x, B′) := Wu(x) ∩ Ws(B′) ̸= ∅. By transversality,

dim W(x, B′) = λB + m − λ′
B − m = λB − λ′

B.

Take y ∈ W(x, B′). Then for every t ∈ R, φt(y) ∈ W(x, B′) and hence
dim W(x, B′) ≥ 1 since t 7→ φt(y) is an injective immersion of R into W(x, B′).
Thus,

λB − λ′
B = dim W(x, B′) ≥ 1

so f is weakly self-indexing. □

The next example is adapted from [15, Remark 2.4].

Example 2.7 (Morse-Bott function that is not Morse-Bott-Smale) Let M =
T2 = R2/(2πZ)2 be the two-dimensional torus with the parametrization
induced from R2 and let f : M → R be

f (x, y) = −(2 + cos 2x)(1 + cos y).

Then f has Btop := {(x, π)|0 ≤ x < 2π} as a critical submanifold of index 1,
which means Btop consists of local maxima, since dim Btop = 1; two saddle
points, (π/2, 0) and (3π/2, 0), and two local minima, (0, 0) and (π, 0).

Let p = (π/2, 0). Since dim Ws(p) = 1, there is an x ̸= p in Ws(p). Take
q := limt→−∞ φt(x) ∈ Btop. Then Wu(q) ∩ Ws(p) = {φt(y) | t ∈ R} ̸= ∅ and
in particular,

Wu(Btop) ∩ Ws(p) ̸= ∅.

But λp = λBtop and therefore f is not weakly self-indexing, and hence, not
Morse-Bott-Smale.

2.2 Topological Chains and Fibered Products

In this section, we begin by introducing an abstract singular chain com-
plex, and define the singular N-cube chain complex, whose homology is
isomorphic to the singular homology. Next, we define fibered products, and

11



2.2. Topological Chains and Fibered Products

assign a boundary operator for fibered products as well. In the final part of
this section, we define the compactificated moduli spaces, and also define
a boundary operator. The chain complex is defined as the smooth singular
N-cube chain complex, enriched by smooth maps from fibered products of
faces with compactificated moduli spaces. This section follows Section 4 of
[1].

2.2.1 Some General Definitions

For every integer p ≥ 0 and a fixed set Cp of topological spaces, we define Sp
to be the free abelian group generated by Cp. If p < 0 or Cp = ∅, then we
define Sp = 0. We call the elements of Sp abstract topological chains of degree p.

In our case, B will be a manifold and Cp will contain manifolds with corners
of dimension p. However, this is not required by the definition.

Definition 2.8 A boundary operator on a collection of abelian groups {Sp}p≥0
is a collection of homomorphisms {∂p : Sp → Sp−1}p≥0 so that

∂p−1 ◦ ∂p : Sp → Sp−2

is the zero homomorphism for every p. To simplify the notation, we will
usually omit the index from ∂p.

2.2.2 Abstract N-Cubes Chains

Let M be a smooth manifold. Fix some large N > dim M and define

IN := [0, 1]N .

Let Cp be the set of p-faces of IN . The boundary map dp : Sp → Sp−1 is defined
on generators P ∈ Cp by

dp(P) =
p

∑
j=0

(−1)j
[

P|xj=1 − P|xj=0

]
where xj denotes the jth coordinate of P, and extended linearly.

Lemma 2.9 The collection {dp : Sp → Sp−1}p≥0 is a boundary operator, that is,
dp−1 ◦ dp : Sp → Sp−2 is the zero map for every p.

Proof It is sufficient to show for generators. Let P ∈ Cp. Then,

dp−1 ◦ dp(P) =
p

∑
j=0

(−1)j
[
dp P|xj=1 − dp P|xj=0

]

12



2.2. Topological Chains and Fibered Products

=
p

∑
j=0

(−1)j

[
p−1

∑
i=0

(−1)i
[ (

P|xj=1

)∣∣∣
x̃i=1

−
(

P|xj=1

)∣∣∣
x̃i=0

−
(

P|xj=0

)∣∣∣
x̃i=1

+
(

P|xj=0

)∣∣∣
x̃i=0

]]

=
p

∑
j=0

[
p−1

∑
i=0

(−1)i+j
[ (

P|xj=1

)∣∣∣
x̃i=1

−
(

P|xj=1

)∣∣∣
x̃i=0

−
(

P|xj=0

)∣∣∣
x̃i=1

+
(

P|xj=0

)∣∣∣
x̃i=0

]]
.

Now, let us expand the first term of the last line:

p

∑
j=1

p−1

∑
i=0

(−1)i+j
(

P|xj=1

)∣∣∣
x̃i=1

=
p

∑
j=1

j−1

∑
i=0

(−1)i+j
(

P|xj=1

)∣∣∣
x̃i=1

+ (−1)i+j+1
(

P|xi=1

)∣∣∣
x̃j+1=1

.

If i < j, then (
P|xj=1

)∣∣∣
x̃i=1

=
(

P|xi=1

)∣∣∣
x̃j+1=1

.

Therefore,
p

∑
j=1

p−1

∑
i=0

(−1)i+j
(

P|xj=1

)∣∣∣
x̃i=1

= 0.

The remaining terms of dp−1 ◦ dp(P) can be shown to cancel similarly. □

2.2.3 Singular N-Cube Chains

Let B be a topological space. A singular Cp-space of B is a continuous map
σ : P → B for some P ∈ Cp. The set of all singular Cp-spaces of B is
denoted by Cp(B). The singular Cp-chain group, Sp(B), is defined to be the
free abelian group generated by Cp(B). The elements of Sp(B) are called
singular topological chains of degree p.

Let P ∈ Cp and write
dp(P) = ∑

j
nj(P)Pj

where Pj ∈ Cp−1. For a singular Cp-space σP : P → B, we define ∂p : Sp(B) →
Sp−1(B) by ∂p(σP) = ∑j nj(P) σP|Pj

. Then

∂p−1 ◦ ∂p : Sp(B) → Sp−2(B)

13



2.2. Topological Chains and Fibered Products

is also the zero map. Thus, we can define the homology groups of (S•(B), ∂•)
by

Hp(S•(B), ∂•) := ker ∂p/Im∂p+1.

Definition 2.10 Let σP, σQ be singular Cp-spaces and denote ∂p(Q) = ∑j njQj.
For a fixed continuous map α : P → Q, we define

∂p(σQ) ◦ α = ∑
j

nj (σQ ◦ α)|α−1(Qj)
.

The subgroup of degenerate singular N-cubes chains Dp(B) ⊂ Sp(B) is the
subgroup generated by the following elements:

1. If α : P → Q is an orientation preserving homeomorphism such that
σP = σQ ◦ α and ∂p(σP) = ∂p(σQ) ◦ α, then σP − σQ ∈ Dp(B).

2. If σP does not depend on some free coordinate of P (that is, there is
1 ≤ j ≤ p such that σP does not depend on xj), then σP ∈ Dp(B).

Theorem 2.11 (Singular N-cube Chain Theorem) [1, Theorem 4.4]

The boundary operator ∂p : Sp(B) → Sp−1(B) induces a homomorphism

∂p : Sp(B)/Dp(B) → Sp−1(B)/Dp−1(B)

and
Hp (S•(B)/D•(B), ∂•) = Hp(B; Z).

for all p < N.

Let M be a smooth manifold. We define the group of smooth singular Cp-chain
group, S∞

p (M) as the subgroup of Sp(M) generated by smooth singular Cp-
spaces σ : P → M. Similarly, D∞

p (M) is defined to be the subgroup of S∞
p (M)

generated by the conditions in Definition 2.10.

Remark 2.12 The proof of Theorem 2.11 can be applied verbatim to show that

H• (S∞
• (M)/D∞

• (M), ∂•) = H∞
• (M; Z)

where H∞
• (M; Z) is the smooth singular homology defined in Appendix A.§2 of

[22].

Since H∞
• (M; Z) ∼= H•(M; Z) by Theorem 2.1 of [22, Appendix A.§2],

H• (S∞
• (M)/D∞

• (M), ∂•) = H•(M; Z).
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2.2. Topological Chains and Fibered Products

2.2.4 Fibered Product of Topological Chains

Let P1, P2, B be topological spaces and let σi : Pi → B be continuous maps for
i = 1, 2. The fibered product of σ1 and σ2 is defined as

P1 ×σ1,B,σ2 P2 := {(x1, x2) ∈ P1 × P2 | σ1(x1) = σ2(x2)}

or, equivalently,
P1 ×σ1,B,σ2 P2 := (σ1 × σ2)

−1(∆)

where ∆ := {(x, x) | x ∈ B} is the diagonal of B. We will usually omit the
maps σ1, σ2 from the notation and write P1 ×B P2 := P1 ×σ1,B,σ2 P2.

Lemma 2.13 Let σi : Pi → B be smooth maps for i = 1, 2 and Pi, B smooth
manifolds of dimension pi and b respectively. If σ1 and σ2 intersect transversely,
then P1 ×B P2 is a smooth manifold of dimension p1 + p2 − b.

Proof Observe that σ1 and σ2 intersect transversely if and only if σ1 × σ2 and
∆ intersect transversely, which implies that P1 ×B P2 = (σ1 × σ2)−1(∆) is a
smooth manifold. In addition

dim P1 ×B P2 = dim ((σ1 × σ2) ⋔ ∆) = p1 + p2 − b. □

Let {Cp}p≥0 be a collection of topological spaces. We say that a topological
space P has degree p if P ∈ Cp (In our case, Cp will contain p-dimensional
manifolds with corners). If B is a b-dimensional smooth manifold, Pi ∈ Cpi

and σi : Pi → B we can associate the degree p1 + p2 − b to P1 ×B P2. In the case
that P1, P2 are also smooth manifolds of dimension p1 and p2 respectively
and the maps σ1 intersect transversely σ2, the degree of P1 ×B P2 is the same
as dim(P1 ×B P2).

The collection {Cp}p≥0 is said to be closed under fibered product with
respect to some collection of maps if for every P1 ∈ Cp1 and P2 ∈ Cp2 , then
P1 ×B P2 ∈ Cp1+p2−b.

We now define fibered products of abstract topological chains.

Definition 2.14 Assume that {Cp} is closed under fibered product with
respect to some collection of maps. Let σi = ∑k ni,kσi,k ∈ Spi(B) for i = 1, 2
and σi,k : Pi,k → B are singular Cpi spaces.

Define Pi := ∑k ni,kPi,k ∈ Spi . Then the fibered product of σ1 and σ2 over B is
defined as

P1 ×σ1,B,σ2 P2 := ∑
k,j

n1,kn2,jP1,k ×σ1,k ,B,σ2,j P2,j ∈ Sp1+p2−b.

To simplify the notation, we usually omit the maps σ1, σ2 from the notation
and write P1 ×B P2 instead of P1 ×σ1,B,σ2 P2. If σ1 = 0 or σ2 = 0, we define
P1 ×B P2 = 0.
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2.2. Topological Chains and Fibered Products

The next lemma extends the boundary operator on S• from Definition 2.8 to
fibered products as well.

Definition 2.15 Let {Cp}p≥0 be a collection of topological spaces and let
{C̃p}p≥0 its closure under fibered product with respect to some collection of
maps. Let S̃p be the free group generated by C̃p. We extend the boundary
operator d : S• → S•−1 to

d : S̃• → S̃•−1

by setting

dp1+p2−b(P1 ×B P2) = d(P1)×B P2 + (−1)p1+bP1 ×B d(P2)

for Pi ∈ Spi and i = 1, 2.

The boundary map on fibered products behaves well with multiple fibered
products, as shown in the following lemma.

Lemma 2.16 The boundary operator on fibered products in Definition 2.15 is a well
defined boundary operator. That is, d2 : S̃• → S̃•−2 is the zero map.

Moreover, d : S̃• → S̃•−1 behaves well with multiple fibered products, that is,

d ((P1 ×B1 P2)×B2 P3) = d (P1 ×B1 (P2 ×B2 P3)) .

Proof The degree of both d(P1)×B P2 and P1 ×B P2 is p1 + p2 − b − 1, so d
reduces the degree by 1.

We compute d2(P1 ×B P2):

d2(P1 ×B P2) = d(d(P1)×B P2 + (−1)p1+bP1 ×B d(P2))

= d2(P1)×B P2

+ (−1)p1+b(− d(P1)×B d(P2) + d(P1)×B d(P2)

+ (−1)p1+bP1 ×B d2(P2)
)

= 0.

Therefore, d : S̃• → S̃•−1 is a well-defined boundary operator.

To show that

d ((P1 ×B1 P2)×B2 P3) = d (P1 ×B1 (P2 ×B2 P3)) ,

we compute both sides:

d ((P1 ×B1 P2)×B2 P3) = d (P1 ×B1 P2)×B2 P3

+ (−1)p1+p2−b1+b2 P1 ×B1 P2 ×B2 dP3

= d(P1)×B1 P2 ×B2 P3 + (−1)p1+b1 P1 ×B1 d(P2)×B2 P3
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2.2. Topological Chains and Fibered Products

+ (−1)p1+p2−b1+b2 P1 ×B1 P2 ×B2 dP3

d (P1 ×B1 (P2 ×B2 P3)) = d(P1)×B1 (P2 ×B2 P3)

+ (−1)p1+b1 P1 ×B1 d (P2 ×B2 P3)

= d(P1)×B1 P2 ×B2 P3 + (−1)p1+b1 P1 ×B1 d(P2)×B2 P3

+ (−1)p1+p2+b1+b2 P1 ×B1 P2 ×B2 dP3

and since (−1)b1 = (−1)−b1 , we get that

d ((P1 ×B1 P2)×B2 P3) = d (P1 ×B1 (P2 ×B2 P3)) . □

2.2.5 Compactificated Moduli Spaces

Let (M, g) be a compact Riemannian manifold and ( f , X) a Morse-Bott-
Smale pair. We denote by φt the flow of X. For every B, B′ ⊂ Crit( f )
critical submanifolds, the mapping (t, x) 7→ φt(x) induces a free R-action on
W(B, B′). Therefore, we can define

M(B, B′) := W(B, B′)/R =
(
Wu(B) ∩ Ws(B′)

)
/R

to be the quotient space of flow lines from B to B′. We call M(B, B′) the
moduli space of flow lines from B to B′.

When we take a fibered product with M(B, B′), that is, a fibered product of
the form

P ×B M(B, B′) or M(B, B′)×B′ P,

we always take with respect to the beginning and endpoint maps

e− : M(B, B′) → B and e+ : M(B, B′) → B′.

Lemma 2.17 The moduli space M(B, B′) is a smooth manifold of dimension λB −
λB′ − 1.

Proof M(B, B′) is a quotient of a manifold by a free R-action, and therefore
a manifold. The dimension of M(B, B′) is

dimM(B, B′) = dim W(B, B′)− 1 = λB − λB′ − 1. □

Theorem 2.18 (Gluing) [11, Appendix A.3, Theorem A.11] Let B, B′, and B′′ be
critical submanifolds of f . Suppose that the following hold:

1. Wu(B) and Ws(B′) intersect transversely.

2. Wu(B′) and Ws(B′′) intersect transversely.
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3. For every x ∈ B′, Wu(x) and Ws(B′′) intersect transversely.

Then there is ε > 0 and an injective local diffeomorphism

G : M(B, B′)×B′ M(B′, B′′)× (0, ε) → M(B, B′′)

such that
M(B, B′′) ∼= M(B, B′′) \ Im(G).

That is, Im(G) is ”an end” of M(B, B′′).

An element a ∈ M(B1, B2)×B2 · · · ×Bn−1 M(Bn−1, Bn) for n ≥ 1 is called a
piecewise gradient flow line from B1 to B2.

Theorem 2.19 (Compactification) [11, Lemma 3.3] Let f : M → R be Morse-
Bott-Smale and B, B′ be critical submanifolds of f . Then M(B, B′) has a compactifi-
cation M(B, B′) consisting of all piecewise gradient flow lines from B to B′. More
precisely,

M(B, B′) = M(B, B′) ∪
⋃

n∈N

⋃
B1,...,Bn

M(B, B1)×B1 · · · ×Bn M(Bn, B′)

where B1, . . . , Bn are critical submanifolds of f and

λB > λB1 > · · · > λBn > λB′ .

M(B, B′) is either empty or a smooth manifold with corners of dimension

λB − λB′ + b − 1.

Moreover, the beginning and endpoint maps e−, e+ extend to smooth maps

e− : M(B, B′) → B, e+ : M(B, B′) → B′

where e− has the structure of a locally trivial fiber bundle.

From now on, we define bi as the dimension of a critical submanifold Bi ⊂
Crit( f ) and i as its index. In addition, we denote by B̂i the set of all critical
points of index i. Equivalently,

B̂i =
⋃
Bi

Bi

where the union runs over all critical submanifolds of index i.

We define
M(Bi, Bk, Bi−j) := M(Bi, Bk)×Bk M(Bk, Bi−j)

and similarly M(Bi, Bs, Bk, Bi−j) for i − j < s < k < i.

Since W(Bi, Bi−j) has dimension (and degree) bi + j, the degree of M(Bi, Bi−j)
is defined to be bi + j − 1 (which is also the dimension of M(Bi, Bi−j)).
Therefore, the degree of M(Bi, Bi−j) can be defined to be bi + j − 1 as well.
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Definition 2.20 Let f : M → R be a weakly self-indexing Morse-Bott func-
tion.

For every p ≥ 0 we define Cp to be the set consisting of connected components
of fibered products of the form

M(Bi1 , Bi2)×Bi2
· · · ×Bin−1

M(Bin−1,Bin
)

with degree p, where m ≥ i1 > . . . > in ≥ 0. Let Sp be the free abelian group
generated by Cp. Define d : Sp → Sp−1 on generators by setting

dM(Bi, Bi−j) = (−1)i+bi ∑
i−j<k<i

∑
Bk

M(Bi, Bk)×Bk M(Bk, Bi−j)

(where the second sum runs over all critical submanifolds of index k).

Lemma 2.21 The above-defined operator d : Sp → Sp−1 is well-defined and it is a
boundary operator, that is, d ◦ d = 0.

Proof First, observe that the degree of M(Bi, Bi−j) is bi + j − 1, M(Bi, Bk)
has degree i − k + bi − 1 (which does not depend on the dimension of Bk)
and M(Bk, Bi−j) has degree k − (i − j) + bk − 1. Therefore, by the definition
of the degree of fibered products, M(Bi, Bk, Bi−j) has degree

(i − k + bi − 1) + (k − (i − j) + bk − 1)− bk = bi + j − 2

and therefore d(M(Bi, Bi−j)) is a linear sum of elements in Sj+bi−2, so d is
well-defined on M(Bi, Bi−j).
To show that d2 = 0, we first calculate dM(Bi, Bk, Bi−j):

d
(
M(Bi, Bk, Bi−j)

)
= d

(
M(Bi, Bk)

)
×Bk M(Bk, Bi−j)

+ (−1)i−k+bi−1+k+bkM(Bi, Bk)×Bk d
(
M(Bk, Bi−j)

)
= (−1)i+bi ∑

k<s<i
∑
Bs

M(Bi, Bs, Bk, Bi−j)

+ (−1)i+bi−1 ∑
i−j<s<k

∑
Bs

M(Bi, Bk, Bs, Bi−j)

and hence

d2 (M(Bi, Bi−j)
)
= (−1)i+bi ∑

i−j<k<i
∑
Bk

d
(
M(Bi, Bk, Bi−j)

)
= ∑

i−j<k<i
∑
Bk

[
∑

k<s<i
∑
Bs

M(Bi, Bs, Bk, Bi−j)

− ∑
i−j<s<k

∑
Bs

M(Bi, Bk, Bs, Bi−j)

]
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2.3. Morse-Bott-Smale Chain Complex

= ∑
i−j<k<i

∑
Bk

∑
i−j<s<k

∑
Bs

[
M(Bi, Bs, Bk, Bi−j)

−M(Bi, Bs, Bk, Bi−j)

]
= 0.

Therefore, d is a well-defined boundary operator. □

Union Of Fibered products

Let P1, P2, P′
1, P′

2, B, B′ be pairwise disjoint topological spaces, and

σi : Pi → B, σ′
i : P′

i → B′

be continuous maps for i = 1, 2. Then

(P1 ∪ P′
1)×B∪B′ (P2 ∪ P′

2) = (
(
(σ1 ∪ σ′

1)× (σ2 ∪ σ′
2)
)−1

(∆(B ∪ B′)))

= (σ1 × σ2)
−1(∆(B)) ∪ (σ′

1 × σ′
2)

−1(∆(B′))

= (P1 ×B P2) ∪ (P′
1 ×B′ P′

2)

and the union is disjoint. Therefore, since B̂ is a finite union of critical
submanifolds, we can define

M(Bi, B̂j) =
⋃
Bj

M(B, Bj)

(where the union runs over all critical submanifolds of index j) and analogu-
ously for M(B̂i, Bj) and M(B̂i, B̂j). The definition of the compactificated
moduli space M(Bi, Bj) can be extended analoguously as well.

In terms of topological chains, if Cp is the set of all elements of the form
M(Bi, Bj) with degree p, we can associate M(Bi, B̂k, Bi−j) with the abstract
topological chain ∑Bk

M(B, Bk, Bi−j), which all have the same degree by the
proof of the above lemma.

2.3 Morse-Bott-Smale Chain Complex

In this section, we define the Morse-Bott-Smale chain complex. The chain
complex consists of smooth maps from faces of IN and fibered products
of faces with compactificated moduli spaces. Next, we define degeneracy
conditions on the chain complex. Then, we define the Morse-Bott homology
of a Morse-Bott function f : M → R. In the next section, we show that the
homology of the chain complex is invariant of the function. This section
follows section 5 of [1].
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2.3. Morse-Bott-Smale Chain Complex

In this section we assume that M is compact and oriented, and f : M → R is
a Morse-Bott-Smale function with respect to some gradient-like vector field
X. In addition, we assume that all critical submanifolds B and their negative
normal bundle ν−∗ (B) are oriented.

2.3.1 Manifolds With Corners

A topological manifold with corners is a second countable Hausdorff topological
space V so that every x ∈ V has a neighborhood x ∈ Ux ⊂ V and a
homeomorphism φx : Ux → Rk × [0, ∞)m−k =: Rm

k . Such a pair (Ux, φx) is
called a chart. We say that two charts (Ux, φx), (Uy, φy) are (C∞)-compatible if
the transition maps

φy ◦ φ−1
x : φx(Ux ∩ Uy) → φy(Ux ∩ Uy)

and
φy ◦ φ−1

x : φx(Ux ∩ Uy) → φy(Ux ∩ Uy)

are both C∞.

Definition 2.22 A (smooth) manifold with corners is a topological manifold
with corners V such that for every x, y ∈ V the charts (Ux, φx) and (Uy, φy)
are C∞-compatible.

Let V be a manifold with corners and let (Ux, φx) be a chart around x ∈ V
so that φx(x) = 0 ∈ Rm

k . Then k does not depend on the choice of (Ux, φx)
(since Rm

k and Rm
l are not diffeomorphic if k ̸= l). Therefore, we can define

the index of x in V to be k and denote if by Ind(x, V). For k = 0, . . . , m, we
define Vk to be the submanifold of index k of V. i.e.

Vk := {x ∈ V | Ind(x, V) = k}.

Note that Vk is a k-dimensional submanifold (without boundary) of V.

Definition 2.23 A k-stratum of V is a connected component of Vk. We define
Vn to be the interior of V, and V \ Vn to be the boundary of V.

Recall (Lemma 2.17) that M(Bi, Bi−j) is an (bi + j − 1)-dimensional manifold.
Using Lemma 2.13, we get that

M(Bi1 , Bi2)×Bi2
M(Bi2 , Bi3)×Bi3

· · · ×Bin
M(Bin , Bin+1)

is a smooth manifold of dimension

n

∑
j=1

(bij + ij − ij+1 − 1)−
n

∑
j=2

bij = bi1 + i1 − in − n.
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2.3. Morse-Bott-Smale Chain Complex

Therefore, M(Bi, Bi−j)k consists of all fibered products

M(Bi, Bi2)×Bi2
M(Bk2 , Bi3)×Bi3

· · · ×Bin
M(Bin , Bi−j)

where bi + j − n = k, or n = bi + j − k. That is, M(Bi, Bi−j)k is the submani-
fold consists of all piecewise gradient flow lines passing through bi + j − k
intermediate critical submanifolds.

Given an orientation on Vm, the interior of V, we can extend the orientation
to V.

Lemma 2.24 Let V be an oriented smooth manifold with corners. Then the orienta-
tion on Vm defines and orientation on V.

Proof By the collar theorem for manifold with corners [23, Lemma 2.1.6],
there is an embedding i : ∂V × [0, 1) ↪→ V. Now, let ξ : [0, 1] → [1/2, 1] be a
diffeomorphism such that ξ(t) = t if t ≥ 3/4. We define

W := V \ i(∂V × [0, 1/2))

and ψ : V → W by
ψ(x, t) = (x, ξ(t))

for (x, t) ∈ ∂V × [0, 1) and ψ(x) = x if x /∈ V × [0, 1). ψ is a smooth bijection,
and also a local diffeomorphism. Hence ψ is a diffeomorphism between V
and W. Now, let O := {(Uα, φα)}α∈A be a collection of orientation-preserving
charts on Vm that covers Vm (such O exists because Vm is orientable). Hence,
O defines an orientation on Vm. Then

O′ = {(Uα ∩ W, φα|W)}α∈A

is a collection of orientation-preserving charts on W that covers W, and hence
induces an orientation on W. Since ψ is an orientation-preserving diffeomor-
phism (because it is the identity on an open set), we get an orientation on
V. □

For x ∈ V, we define T̂xV to be the tangent space at x of the stratum
containing x.

Definition 2.25 Let V, W be smooth manifolds with corners and let A ⊂ Y
be a submanifold with corners. We say that f : V → W intersects A stratum
transversely if

d fx(T̂xV)⊕ T̂f (x)A = T̂f (x)W

for every x ∈ f−1(A).

We will use the following theorem:
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2.3. Morse-Bott-Smale Chain Complex

Theorem 2.26 [24, Theorem 3] Let V be a manifold with corners and W be a
manifold without boundary. Let A ⊂ W be a submanifold with corners and
f : V → W be a smooth map that intersects A transversely and stratum transversely.
Assume that f−1(A) ̸= ∅. Then:

1. f−1(A) ⊂ V is a smooth submanifold with corners.

2. dim X − dim f−1(A) = dim Y − dim A.

3. For every x ∈ f−1(A),

Ind(x, V)− Ind(x, f−1(A)) = Ind( f (x), W)− Ind( f (x), A).

2.3.2 Complex

We set Cp to be the set consisting of p-faces of IN and the connected compo-
nents of fibered products with dimension p of the form

Q′ = Q ×σ,B̂i
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in)

where i1 > i2 > . . . in ≥ 0, Q is a face of dimension q ≤ p, and σ : Q → Bi1
are smooth. The fibered products are taken with respect to e− and e+ (for
M(B̂ij , B̂ij+1)). Observe that Q′ has degree q + i1 − in − n.

Lemma 2.27 [1, Lemma 5.1] The objects in Cp are compact oriented manifolds with
corners.

Definition 2.28 Let Sp be the free abelian group generated by Cp. We define
S∞

p (B̂i) to be the subgroup of Sp(B̂i) generated by the maps (σP : P → B̂i) for
some P ∈ Cp satisfying the following conditions:

1. σP is smooth.

2. if P is a connected component of a fibered product, then σP = e+ ◦ π,
where

π : Q ×B̂i
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in) → M(B̂in−1 , B̂in)

is the projection to the last component of the fibered product.

e+ ◦ π can be described geometrically as the endpoint map of a piece-
wise gradient line.

We will later (Definition 2.37) quotient S∞
p (B̂i) by a subgroup of D∞

p (B̂i) ⊂
S∞

p (B̂i), creating an identification between maps from connected components
of fibered products to ∑α nασα ∈ S∞

p (B̂i) where each σα : Pα → B̂i is a smooth
map from p-faces of IN .

We say that the elements of S∞
p (B̂i) have Morse-Bott degree p + i.
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2.3. Morse-Bott-Smale Chain Complex

Definition 2.29 For every 0 ≤ k ≤ m, we define C̃k to be free group generated
by all smooth singular topological chains of Morse-Bott degree k. i.e.

C̃k( f ) :=
k⊕

i=0

S∞
k−i(B̂i).

Let P be a topological space and let σP : P → B̂i be a smooth map. Every
point in the fibered product

P ×B̂i M(B̂i, B̂i−j)

can be described as a pair (x, y), where x ∈ P and y is a piecewise gradient
flow line from σP(x) to B̂i−j. Hence, the map

σj : P ×B̂i M(B̂i, B̂i−j) → B̂j

defined by σj = π2 ◦ e+ sends such (x, y) to e+(y).

Lemma 2.30 [1, Lemma 5.3] Let σP : P → B̂i be a singular Cp-space in S∞
p (B̂i)

and let 1 ≤ j ≤ i. Then we can identify P ×σP,B̂i
M(B̂i, B̂i−j) with

∑
k

nkRk ∈ Sp+j−1

where Rk is a connected component of P ×σP,B̂i
M(B̂i, B̂i−j), and nk is the sign

induced from the orientation if dim Rk = 0 and 1 otherwise.

Proof B̂i is a union of submanifolds of M. σP : P → B̂i is continuous, P
is connected and so σP(P) lies in a connected component B of B̂i. Now,
M(B, B̂i−j) is an abstract topological chain of degree j + b − 1, so

P ×σP,B M(B, B̂i−j)

has degree p + j − 1 (which is independent of the degree of B).

Let B′ be a connected component of B̂i−j. Since P ∈ Cp is a compact manifold
with corners, M(B, B′) is also a compact manifold with corners. By 2.27
P ×B M(B, B′) is also a compact manifold with corners, so it has finitely
many components. Thus P ×B M(B, B̂ij) has finitely many components. □

Using the above lemma, we can define a homomorphism

∂j : S∞
p (B̂i) → S∞

p+j−1(Bi−j).

We define ∂j on a generator σP : P → B̂i by ∂j(σP) = σR, where σR = ∑k nkσRk

and extend linearly. Note that since Rk is a connected component of a fibered
product, there is only one map

(σ : Rk → B̂i−j) ∈ S∞
p+j−1(Bj),
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2.3. Morse-Bott-Smale Chain Complex

which is σRk = e+ ◦ π2. ∂j decreases the Morse-Bott degree by 1. We define
∂j : S∞

p (B̂i) → S∞
p+j−1(Bi−j) to be the zero map if j > i.

We can now define ∂ : C̃k( f ) → C̃k−1( f ) by

∂(σ) =
m⊕

i=0

∂j(σ)

where σ ∈ S∞
k−1(Bi), ∂0 = (−1)k · ∂ (where ∂ is the boundary operator defined

in Section 2.2) and ∂j is defined as above for 1 ≤ j ≤ i.

Proposition 2.31 For 0 ≤ j ≤ m, ∑
j−q
q=0 ∂q∂j−q = 0. This means that (C̃•( f ), ∂)

is a chain complex.

Proof The case j = 0 is the singular homology. Let σP ∈ S∞
p (B̂i) be a singular

Cp-space of B̂i. Since

∂q ◦ ∂j−q : S∞
p (B̂i) → S∞

p+j−2(B̂i−j)

is the zero map if j > i, assume 1 ≤ j ≤ i.

We are going to compute each component of ∑i
j=1 ∂q(∂j−q(σP)) separately. We

are going to write the computations in terms of abstract topological chains.
For a singular Cp-space σ : P → B̂i, we write

dj(P) = R ∈ Sp+j−1

if ∂j(σP) = σR. This is allowed because only one map is used from every
domain in the computations below.

We divide into 3 cases: q = 0, 1 ≤ q < j, and q = j. If q = 0, then

d0(dj(P)) = d0

(
P ×B̂i

M(B̂i, B̂i−j)
)
= d0

(
∑
Bi

P ×Bi M(Bi, B̂i−j)

)

= (−1)p+i−1
(

d(P)×Bi M(B̂i, B̂i−j)

+ ∑
Bi

(−1)p+bi P ×Bi dM(Bi, B̂i−j)

)
= (−1)p+i−1

(
d(P)×Bi M(B̂i, B̂i−j)

+ ∑
Bi

(−1)p+bi+bi+i
j−1

∑
q=1

P ×Bi M(Bi, B̂i−q, B̂i−j)

)
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2.3. Morse-Bott-Smale Chain Complex

= (−1)p+i−1
(

d(P)×Bi M(B̂i, B̂i−j)

+ (−1)p+i
j−1

∑
q=1

∑
Bi

P ×Bi M(Bi, B̂i−q, B̂i−j)

)

= (−1)p+i−1d(P)×B̂i
M(B̂i, B̂i−j)−

j−1

∑
q=1

P ×B̂i
M(B̂i, B̂i−q, B̂i−j).

If 1 ≤ q ≤ j − 1, then

dq
(
dj−q(P)

)
= P ×B̂i

M(B̂i, B̂i−j+q, B̂i−j).

If q = j, then

dj(d0(P)) = dj

(
(−1)p+id(P)

)
= (−1)p+i(dP ×B̂i

M(B̂i, B̂i−j)).

Summing everything yields

j

∑
q=0

dq
(
dj−q(P)

)
= (−1)p+i−1d(P)×B̂i

M(B̂i, B̂i−j)

−
j−1

∑
q=1

P ×B̂i
M(B̂i, B̂q, B̂i−j)

+
j−1

∑
q=1

P ×B̂i
M(B̂i, B̂i−j+q, B̂i−j)

+ (−1)p+i(d(P)×Bi M(Bi, Bi−j))

= 0 □

2.3.3 Orientations

Let B ⊂ Crit( f ) be a critical submanifold. Recall that we assume that ν−∗ (B)
and B are oriented. The relation

Tp M = TpB ⊕ ν−p (B)⊕ ν+p (B)

determines an orientation on ν+p (B). The maps E− : ν−∗ (B) → Wu(B) and
E+ : ν+∗ (B) → Ws(B) (from Theorem 2.5) are bijective immersions, and hence
induce orientation on Wu(B) and Ws(B), respectively.

For B, B′ connected critical submanifolds, the orientation on W(B, B′) is
determined by

Tx M = TxW(B, B′)⊕ νx
(
Ws(B′)

)
⊕ νx(Wu(B))
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2.3. Morse-Bott-Smale Chain Complex

for x ∈ W(B, B′).

For a regular value f (B′) < a < f (B) we can identify M(B, B′) = f−1(a) ∩
W(B, B′) and get an orientation on M(B, B′) using

TxW(B, B′) = span ((−∇ f )(x))⊕ TxM(B, B′)

for all x ∈ f−1(a) ∩ W(B, B′).

The orientation on M(B, B′) can be extended to M(B, B′) using Lemma 2.24.

Definition 2.32 Let P1, P2 be smooth manifolds with corners, and B be an
oriented manifold without boundary. Assume that σi : Pi → B intersect
transversely and stratum transversely. We define an orientation on P1 ×B P2
by

(−1)b·p2 T∗(P1 ×B P2)⊕ (σ1 × σ2)
∗ (ν∗ (∆(B))) = T∗(P1 × P2)

where ∆(B) = {(x, x) | x ∈ B} and ν∗(∆(B)) denotes the normal bundle of
∆(B) in B × B.

Lemma 2.33 [1, Lemma 5.8] The orientation defined above is associative. That
is, the orientations induced on (P1 ×B1 P2)×B2 P3 and P1 ×B1 (P2 ×B2 P3) are the
same.

Proof Let σ1 : P1 → B1, σ2 : P2 → B1, σ′
2 : P2 → B2, and σ3 : P3 → B2 be

smooth maps. We take the fibered products with respect to these maps.

We start by computing the orientation of (P1 ×B1 P2)×B2 P3. By Definition
2.32,

(−1)b2 p3 T∗((P1 ×B1 P2)×B2 P3)⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2)))

= T∗((P1 ×B1 P2)× P3) = T∗((P1 ×B1 P2))⊕ T∗(P3).

Applying the definition again for P1 ×B1 P2 gives

(−1)b1·p2 T∗(P1 ×B1 P2)⊕ (σ1 × σ2)
∗(ν∗(∆(B1))) = T∗(P1 × P2).

Therefore,

T∗(P1 × P2)⊕ T∗(P3) = (−1)b1·p2 T∗(P1 ×B1 P2)

⊕ (σ1 × σ2)
∗(ν∗(∆(B1)))⊕ T∗(P3)

= (−1)b1·p2+b1 p3T∗(P1 ×B1 P2)

⊕ T∗(P3)⊕ (σ1 × σ2)
∗(ν∗(∆(B1))).

Putting these equations together yields:
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(−1)b2 p3+b1 p2+b1 p3 T∗((P1 ×B1 P2)×B2 P3)

⊕(σ′
2 × σ3)

∗(ν∗(∆(B2)))

⊕(σ1 × σ2)
∗(ν∗(∆(B1))) = T∗((P1 × P2)× P3)

= T∗(P1)⊕ T∗(P2)⊕ T∗(P3).

Now, we compute the orientation of P1 ×B1 (P2 ×B2 P3):

(−1)b1(p2+p3−b2)T∗(P1 ×B1 (P2 ×B2 P3))⊕ (σ1 × σ2)
∗(ν∗(∆(B1)))

= T∗(P1 × (P2 ×B2 P3)) = T∗(P1)⊕ T∗(P2 ×B2 P3).

Applying the definition again for P1 ×B1 P2 gives

(−1)b2·p3 T∗(P2 ×B2 P3)⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2))) = T∗(P2 × P3).

and combining yields

(−1)b1(p2+p3−b2)+b2 p3 T∗(P1 ×B1 (P2 ×B2 P3))

⊕(σ1 × σ2)
∗(ν∗(∆(B1)))

⊕(σ′
2 × σ3)

∗(ν∗(∆(B2))) = T∗(P1 × (P2 × P3))

= T∗(P1)⊕ T∗(P2)⊕ T∗(P3).

The coefficient of the orientation is

(−1)b1(p2+p3−b2)+b2 p3 = (−1)b1 p2+b1 p3−b1 p2+b2 p3 .

Now, if we want to exchange places between (σ1 × σ2)∗(ν∗(∆(B1))) and
(σ′

2 × σ3)∗(ν∗(∆(B2))), we have to multiply by (−1)b1b2 . Therefore,

(−1)b1 p2+b1 p3−b1 p2+b2 p3 T∗(P1 ×B1 (P2 ×B2 P3))

⊕ (σ1 × σ2)
∗(ν∗(∆(B1)))

⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2)))

= (−1)b1 p2+b1 p3+b2 p3 T∗(P1 ×B1 (P2 ×B2 P3))

⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2)))

⊕ (σ1 × σ2)
∗(ν∗(∆(B1)))

Together, we got that

(−1)b2 p3+b1 p2+b1 p3 T∗((P1 ×B1 P2)×B2 P3)

⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2)))⊕ (σ1 × σ2)
∗(ν∗(∆(B1)))

=(−1)b1 p2+b1 p3+b2 p3 T∗(P1 ×B1 (P2 ×B2 P3))

⊕ (σ′
2 × σ3)

∗(ν∗(∆(B2)))⊕ (σ1 × σ2)
∗(ν∗(∆(B1))).

Therefore,

T∗((P1 ×B1 P2)×B2 P3) = T∗(P1 ×B1 (P2 ×B2 P3)). □
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Using the above lemma, we get a well-defined orientation on the connected
components of

Q ×B̂i1
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in)

where Q is a face of IN .

2.3.4 Degenerate Singular Topological Chains

Definition 2.34 Let σP, σQ ∈ S∞
p (B̂i) be singular Cp-spaces in B̂i and let

d(Q) = ∑j njQj ∈ Sp−1. For a continuous map

α : P → Q,

let ∂0σQ ◦ α denote the formal sum

(−1)p+i ∑
j

nj (σQ ◦ α)|α−1(Qj)
.

Define D∞
p (Bi) ⊂ S∞

p (Bi), the set of degenerate singular topological chains, by
the following conditions, called degeneracy conditions:

1. If α is an orientation preserving homeomorphism such that σQ ◦ α = σP
and ∂0σQ ◦ α = ∂0σP, then σQ − σP ∈ D∞

p (B̂i).

2. If P is a face of IN and σP does not depend on a free coordinate of P,
then σP ∈ D∞

p (B̂i) and ∂j(σP) ∈ D∞
p+j−1(B̂i−j) for every j = 1, . . . , m.

3. If P and Q are connected components of fibered products and α is
an orientation reversing homeomorphism such that σQ ◦ α = σP and
∂0σQ ◦ α = ∂0σP, then σQ + σP ∈ D∞

p (B̂i).

4. If Q is a face of IN and R is a connected component of

Q ×B̂i1
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in)

with deg R > dim Bin for every connected component Bin of B̂in , then
σR ∈ D∞

r (B̂in) and ∂j(σR) ∈ D∞
r+j−1(B̂in−j) for every j = 0, . . . , m.

5. If ∑α nασα ∈ S∗(R) is a smooth singular chain in a connected component
R of a fibered product that represents the fundamental class of R and
(−1)r−in ∂0σR − ∑α nα∂(σR ◦ σα) is in D∞

r−1(B̂i) as per conditions (1)-(5),
then

σR′ := σR − ∑
α

nα(σR ◦ σα) ∈ D∞
r (Bin)

and ∂j(σR′) ∈ Dr+j−1(Bin−j) for every j = 1, . . . , m.
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The reasoning behind the degeneracy conditions is as follows: conditions (1)
and (2) are similar to the degeneracy conditions in Definition 2.10, so that the
chain complex (S∞

• (B̂i)/D∞
• (B̂i), ∂0) computes the singular homology of B̂i,

by Theorem 2.11. In addition, conditions (1) and (3) define an identification
between connected components of fibered products, based on their orienta-
tion. Condition (4) is a dimension limit, and condition (5) provides a way to
identify between singular chains from fibered products and from faces of IN .

Lemma 2.35 [1, Lemma 5.10] For every i, j = 0, . . . , m, the homomorphism

∂j : S∞
p (B̂i) → S∞

p+j−1(B̂i−j)

induces a homomorphism

∂j : S∞
p (B̂i)/D∞

p (B̂i) → S∞
p+j−1(B̂i−j)/D∞

p+j−1(B̂i−j).

The following lemma shows that for every σR : R → B̂i where R is a connected
component of a fibered product, there is an equivalent smooth singular chain
σ = ∑β nβσβ where σβ : Pβ → B̂i are smooth singular chains and Pβ are faces
of IN .

Lemma 2.36 Let R ∈ Cr be a connected component of a fibered product

P ×B̂i1
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in)

with deg R = r. Then there is a smooth singular chain σ = ∑α nασα such that
σR − σ ∈ D∞

r (B̂in) and:

1. σα : Pα → B̂in is a smooth singular chain and Pα is an r-face of IN .

2. σα = σR ◦ σ̃α where σ̃α : Pα → R is a smooth singular chain in R for all α.

3. ∑α nασ̃α represents the fundamental class of R. That is, ∑α nασ̃α is a relative
cycle in Sp(R, ∂R) = Sr(R)/Sr(∂R) which is a generator of Hr(R, ∂R).

Proof We prove by induction on r. If r = 0, then R is a connected 0-
dimensional manifold with corners, and hence a point.

Therefore, ∂0σR = 0, and σ : {0} → R represents of the fundamental class of
R. Also ∂(σR ◦ σ) = 0, so by the fifth condition of degeneracy in Definition
2.34,

σR − σR ◦ σ ∈ D∞
0 (B̂in).

Assume now that r ≥ 1. Write ∂R = ∑k nkRk where Rk ∈ Cr−1. Using the
induction hypothesis, for every Rk there is a singular chain

σk = ∑
jk

njk σjk ∈ Sr−1(Rk)
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that satisfies the conditions of the lemma. Then

∂0σR − (−1)r+in ∑
k

nkσk = (−1)r+in

(
∑

k
nkσRk − ∑

k
nk ∑

jk

njk σjk

)

= (−1)r+in

(
∑

k
nk

(
σRk − ∑

jk

njk σjk

))
∈ D∞

r−1(Bin).

By the induction hypothesis, ∑jk njk σ̃jk is a relative cycle in Sr−1(Rk, ∂Rk) that
represents the fundamental class of Rk. Therefore,

∑
k

nk ∑
jk

njk σ̃jk ∈ Sr−1(∂R)

is a relative cycle in Sr−1(∂R, ∂(∂R)) = Sr−1(∂R) that represents the fun-
damental class of ∂R. By Lemma VI.9.1 of [25], there is a singular chain
∑α nασα ∈ Sr(R) (which can be made smooth by perturbing the interior) such
that

∂

(
∑
α

nασα

)
= ∑

k
nkσk ∈ Sr(R).

Since
∂0σR − (−1)r+in ∑

k
nkσk ∈ D∞

r−1(Bin),

we get that
σR − ∑

α

nα(σR ◦ σα) ∈ Dr(Bin). □

2.3.5 Homology

In this subsection, we define the Morse-Bott homology. Let f : M → R be
a Morse-Bott-Smale function. Recall that we defined Cp in Subsection 2.3.2
to be the set consisting of p-faces of IN , as well as connected components of
fibered products with degree p of the form

Q ×σQ,B̂i1
M(B̂i1 , B̂i2)×B̂i2

· · · ×B̂in−1
M(B̂in−1 , B̂in)

where σQ : Q → B̂i1 is a smooth map from a face of dimension q ≥ p and
m ≥ i1 > · · · > in ≥ 0.

Lemma 2.27 states that all elements in Cp are compact manifolds with corners.
We defined Sp to be the free abelian group generated Cp. We defined S∞

p (B̂i)

in Definition 2.28 to be the subgroup generated by smmoth maps σP :→ B̂i
where P is a p-face of IN .
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However, if P is a connected component of a fibered product, the only map
σP : P → B̂i in S∞

p (B̂i) is σP = e+ ◦ π, where π is the projection to the last
term of the fibered product and e+ is the endpoint map. In this case, the map
σP can be described geometrically as the endpoint map of every piecewise
gradient flow line. We say that an element σ ∈ S∞

p (B̂i) has Morse-Bott degree
p + i.

The next step is defining the intermediate complex (C̃•( f ), ∂). We defined C̃k
to be the set of all smooth singular chains with Morse-Bott degree k. That is,

C̃k( f ) =
k⊕

i=0

S∞
k−i(B̂i).

The definition of ∂ is as follows: We define ∂0 : S∞
p (B̂i) → S∞

p−1(Bi) to be
(−1)p+i times the boundary operator defined in Section 2.2. For 1 ≤ j ≤ k,
we define ∂j(σP) = σR, where R = P ×σP,B̂i

M(B̂i, B̂j). If j > i, then ∂j is
defined to be the zero map. The maps ∂j are well-defined by Lemma 2.30.

The boundary operator ∂ is defined by

∂ :=
m⊕

j=0

: ∂j : C̃k( f ) → C̃k−1( f ).

Lemma 2.31 states that (C̃•( f ), ∂) is a chain complex. However, we want to
identify ∂j(σP) with a smooth singular chain

σ = ∑
α

nασα ∈ S∞
p+j−1(B̂i−j)

where all σα : Pα → B̂i−j are maps from faces of IN to B̂i−j. To do so, we
define a free abelian subgroup D∞

p (B̂i) ⊂ S∞
p (B̂i) generated by the degeneracy

conditions in Definition 2.34.

Definition 2.37 We define

Ck(B̂i) = S∞
k (B̂i)/D∞

k (B̂i)

to be the subgroup of non-degenerate smooth singular chains in S∞
k (B̂i).

Definition 2.38 We define Ck( f ) to be the set of all non-degenerate smooth
singular chains with Morse-Bott degree k. That is,

Ck( f ) :=
k⊕

i=0

Ck−i(B̂i).

The boundary map
∂ : Ck( f ) → Ck−1( f )

is the induced homomorphism from ∂ : C̃k( f ) → C̃k−1( f ). The pair (C•( f ), ∂)
is called the Morse-Bott chain complex of f .
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2.3. Morse-Bott-Smale Chain Complex

Lemma 2.35 shows that

∂ : Ck( f ) → Ck−1( f )

is well-defined and that ∂2 : Ck( f ) → Ck−2( f ) is the zero map (because it is
induced from a zero map). Therefore, (C•( f ), ∂) is a chain complex.

Definition 2.39 The Morse-Bott homology of f are the groups

Hk(C•( f ), ∂).

When m = 2, the complex can be pictured as follows:

S∞
0 (B̂2)/D∞

0 (B̂2) 0

⊕ ⊕

S∞
1 (B̂1)/D∞

1 (B̂1) S∞
0 (B̂1)/D∞

0 (B̂1) 0

⊕ ⊕ ⊕

S∞
2 (B̂0)/D∞

2 (B̂0) S∞
1 (B̂0)/D∞

1 (B̂0) S∞
0 (B̂0)/D∞

0 (B̂0) 0

∥ ∥ ∥

C2( f ) C1( f ) C0( f ) 0

∂0

∂1
∂2

∂0

∂1

∂0

∂1

∂0 ∂0 ∂0

∂ ∂ ∂

Examples

Example 2.40 Let f : M → R be a constant function.

In this case, there is only one critical submanifold, which has index 0. That
is, B̂0 = M and B̂i = ∅ for i > 0. Then C̃k( f ) = S∞

k (B̂0) and degeneracy
conditions (3)-(5) in Definition 2.34 are vacuus since there are no fibered
products. Since conditions (1) and (2) in definitions 2.10 and 2.34 are the
same, we get that Sk(B̂0) and Dk(B̂0) are both the subgroups restricted to
smooth singular chains of Sk(B̂0) and Dk(B̂0) respectively. The boundary
operator ∂0 is defined to be (−1)k times the boundary operator in Section 2.2,
which does not affect the homology.
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2.3. Morse-Bott-Smale Chain Complex

The complex looks like (for m = 2):

0 0

⊕ ⊕

0 0 0

⊕ ⊕ ⊕

S∞
2 (B̂0)/D∞

2 (B̂0) S∞
1 (B̂0)/D∞

1 (B̂0) S∞
0 (B̂0)/D∞

0 (B̂0) 0

∥ ∥ ∥

C2( f ) C1( f ) C0( f ) 0

∂0

∂1

∂2
∂0

∂1

∂0

∂1

∂0 ∂0

∂ ∂ ∂

The bottom row is equivalent to the smooth singular N-cube chain complex
(S∞

k (B̂0)/D∞
k (B̂0), ∂) from Remark 2.12.

Therefore,
Hk(Ck( f ), ∂) ∼= Hk(S∞

k (B̂0)/D∞
k (B̂0), ∂).

By Theorem 2.11 and Remark 2.12,

Hk(S∞
k (B̂0)/D∞

k (B̂0), ∂) ∼= Hk(B̂0; Z).

And since B̂0 = M ,
Hk(C•( f ), ∂) ∼= Hk(M; Z)

so the chain complex (C•( f ), ∂) yields the same homology as the singular
homology.

Example 2.41 Let f : M → R be a Morse-Smale function.

Since every critical point is isolated, B̂i is a zero-dimensional submanifold of
M, and hence a finite set of points. Hence, every singular Cp space

σ : P → B̂i

is a constant map (since P is connected). If P is not zero-dimensional face of
IN , then σ does not depend on a free coordinate of P and hence σ ∈ D∞

p (B̂i).
In addition, by the fourth degeneracy condition, σR ∈ D∞

k (B̂i) if k > 0 and R
is a connected component of a fibered product. Therefore,

D∞
k (B̂i) = S∞

k (B̂i)

for every k = 1, . . . , m, and

∂j : Ck(B̂i) → Ck+j−1(B̂i−j)
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2.3. Morse-Bott-Smale Chain Complex

is trivial if j ̸= 1. The first degeneracy condition identfies between all maps
with the same image and hence implies that S∞

0 (B̂i)/D∞
0 (B̂i) is the free

abelian group generated by the points in B̂i.

If dim M = 2, the complex can be pictured as follows:

S∞
0 (B̂2)/D∞

0 (B̂2) 0

⊕ ⊕

0 S∞
0 (B̂0)/D∞

0 (B̂0) 0

⊕ ⊕ ⊕

0 0 S∞
0 (B̂0)/D∞

0 (B̂0) 0

∥ ∥ ∥

C2( f ) C1( f ) C0( f ) 0

∂0

∂1

∂2 ∂0

∂1

∂0

∂1

∂0 ∂0

∂ ∂ ∂

If q ∈ B̂i, then

∂1(q) : q ×Bi M(Bi, Bi−1)
π2−→ M(Bi, Bi−1)

e+−→ Bi−1

counts the signed bumber of gradient flow lines from q to Bi−1, so

∂1(q) = ∑
p∈B̂i−1

n(q, p)p ∈ Ck−1( f ) = B̂i−1.

Hence, we get that (C•( f ), ∂) is the Morse-Smale complex, and since the
Morse homology is isomorphic to the singular homology [4, Theorem 4.9.3],

Hk(C•( f ), ∂) = Hk(M; Z).

Example 2.42 Let M be S2 =
{
(x, y, z) | x2 + y2 + z2 = 1

}
and f (x, y, z) = z2.

We are going to nuse the standard metric on S2.

Then B̂0 = S1 × {0}, B̂1 = ∅ and B̂2 = {N, S} where N, S are the north
and south pole, respectively. Similarly to Example 2.41, the first and second
degeneracy conditions imply that S∞

0 (B̂2)/D∞
0 (B̂2) ∼= ⟨N, S⟩ ∼= Z ⊕ Z and

S∞
k (B̂2)/D∞

k (B̂2) = 0 if k > 0.
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2.3. Morse-Bott-Smale Chain Complex

The complex can be pictured as:

⟨N, S⟩ 0

⊕ ⊕

0 0 0

⊕ ⊕ ⊕

S∞
2 (B̂0)/D∞

2 (B̂0) S∞
1 (B̂0)/D∞

1 (B̂0) S∞
0 (B̂0)/D∞

0 (B̂0) 0

∥ ∥ ∥

C2( f ) C1( f ) C0( f ) 0

∂0

∂1

∂2 ∂0

∂1

∂0

∂1

∂0 ∂0

∂ ∂ ∂

The bottom row is the smooth N-cube chain complex Ck(B̂0, ∂0), and

Hk(S∞
k (B̂0)/D∞

k (B̂0), ∂0) ∼= Hk(B̂0; Z)

by Theorem 2.11 and Remark 2.12. The moduli space

M(B̂2, B̂0) = M(B̂2, B̂0)

is a disjoint union of two copies of S1 with opposite orientation, namely

M(B̂2, B̂0) = N ×N M(B̂2, B̂0) ∪ S ×S M(B̂2, B̂0).

Therefore, there is an orientation reversing map

α : N ×N M(B̂2, B̂0) → S ×S M(B̂2, B̂0)

such that ∂2(N) ◦ α = ∂0(S). Also, ∂0(∂2(N)) = ∂0(∂2(S)) = 0. The third
condition of degeneracy in Definition 2.34 implies that

∂2(N + S) = ∂2(N) + ∂2(S) ∈ D∞
1 (B̂0).

Using the fact that |z| is strictly decreasing along flow lines, we can identify

R := N ×N M(B̂2, B̂0) ∼= S1 × {1/2}.

Now, let σα ∈ S1(R) be a smooth singular chain in R that represents the
fundamental class of R (that is, a generator of H1(R, ∂R)). Since R is a closed
manifold, ∂σα = 0 and so ∂0σR = ∂0(σR ◦ σα) = 0. By the fifth condition of
degeneracy in Definition 2.34,

σR − σR ◦ σα ∈ D∞
1 (B̂0).
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2.3. Morse-Bott-Smale Chain Complex

Observe that ∂R(x, y, 1/2) = (x, y, 0) and hence ∂R is a diffeomorphism
between R and B̂0, σR ◦ σα represents the fundamental class of B̂0. This means
that

Im (∂ : C2( f ) → C1( f )) = ker (∂ : C1( f ) → C0( f ))

and hence H1(C•( f ), ∂) = 0. In addition,

H2(C•( f ), ∂) =
⟨N, S⟩
⟨N + S⟩

∼= Z

and hence

Hk (C•( f ), ∂) ∼=
{

Z k = 0, 2
0 k ̸= 0, 2

Example 2.43 Let M be S2 as in Example 2.42 and

f (x, y, z) = −z2.

This time B̂0 = {N, S} and B̂1 = S1 × {0}. By the same argument as in
examples 2.41 and 2.42,

S∞
0 (B̂0)/D∞

0 (B̂0) ∼= ⟨N, S⟩ ∼= Z ⊕ Z

and S∞
k (B̂0)/D∞

k (B̂0) = 0 if k > 0.

The Morse-Bott complex looks like:

S∞
1 (B̂1)/D∞

1 (B̂1) S∞
0 (B̂1)/D∞

0 (B̂1) 0

⊕ ⊕ ⊕

0 0 ⟨N, S⟩ 0

∥ ∥ ∥

C2( f ) C1( f ) C0( f ) 0

∂0

∂1

∂0

∂1

∂0 ∂0

∂ ∂ ∂

The second row is the chain complex Ck(B̂1, ∂0). As in the previous example,
M(B̂1, B̂0) consists of two copies of S1 with opposite orientation. We can see
from

∂1(σP) : P ×B̂1
M(B̂1, B̂0)

π2−→ M(B̂1, B̂0)
e+−→ B̂0 = {N, S}

that ∂1(σP) ∈ {N − S, S − N} (Depending on the orientation). This means
that

ker (∂ : C1( f ) → C0( f )) = 0

and hence H1(C•( f ), ∂) = 0. In addition,

H0( f ) =
⟨N, S⟩
⟨N − S⟩

∼= Z
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2.4. Independence On The Function

and hence,

Hk(C•( f ), ∂) ∼=
{

Z k = 0, 2
0 k ̸= 0, 2

,

2.4 Independence On The Function

In this section, we prove that the homology the chain complex (C•( f ), ∂)
does not depend on the choice of the function f . In the previous section,
we have seen that if f is constant, the homology of (C•( f ), ∂) is the singular
homology. Therefore, Hk(Ck( f ), ∂) ∼= Hk(M; Z) for every f .

We are going to prove it similarly to [1, Theorem 6.17], but using the outline
of the proof for [4, Theorem 3.4.2]. The proofs share very similar ideas, which
can also be found in [11, Theorem 3.1], [26, Theorem 1.1], [27, Chapitre 1],
and [28, Theorem 8].

Theorem 2.44 Let f0, f1 : M → R be two Morse-Bott-Smale functions. Then

Hk(C•( f0), ∂) ∼= Hk(C•( f1), ∂)

for every k ∈ N. In particular, Hk(C•( f1), ∂) ∼= Hk(M; Z).

The outline of the proof is as follows: We choose a smooth function

F : M×[0, 1] → R

(x, s) 7→ Fs(x) = F(x, s)

which satisfies {
Fs(X) = f0(X) s ≤ 1

3

Fs(X) = f1(X) s ≥ 2
3

1. We deduce a chain morphism

ΦF : (C•( f0), ∂ f0) → (C•( f1), ∂ f1).

2. We show that if f0 = f1 and Fs(x) = f0(x) = f1(x) then ΦF is the
identity morphism.

3. We show that if f2 : M → R is another Morse-Bott function,F : M ×
R → R is a homotopy from f0 to f1, G : M × R → R is a homotopy
from f1 to f2 and H : M × R → R is a homotopy from f0 to f2 so that
F, G, H all satisfy the conditions in 2.4, then

ΦG ◦ ΦF, φH : (C•( f0), ∂ f0) → (C•( f2), ∂ f2)

induce the same map on homology.
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2.4. Independence On The Function

Using those properties, we can choose f2 = f0 and H(s, x) = f0(x) (the
constant homotopy). Then ΦG = (ΦF)−1 on homology and so ΦF is an
isomorphism on homology.

Note: The chain complex depends not only on the function but also on the
Riemannian metric. However, the independence of the metric follows from
the fact that the homology of a constant function (Example 2.40) does not
depend on the metric.

Proof (First Step) We extend F to M ×
[
− 1

3 , 4
3

]
by setting Fs(x) = f0(x) for

s < 0 and Fs(x) = f1(x) for s > 1.

Let g : R → R be defined as g(x) = C · (2x3 − 3x2) for some C > 0. g is a
Morse function with local maximum at 0 and a local minimum at 1. If C
is sufficiently large, then ∂F

∂s (x, s) + g′(s) < 0 for every (x, s) ∈ M × R. The
function F̃ = F + g is a Morse-Bott function whose critical points are

Crit(F̃) = Crit( f0)× {0} ∪ Crit( f1)× {1}.

For B ⊂ Crit( f0) a critical submanifold of f0,

λF̃
B×{0} = λ

f0
B + 1

and for B′ ⊂ Crit( f1) a critical submanifold of f1,

λF̃
B′×{1} = λ

f1
B′ .

By perturbing F a little in the range M ×
[ 1

3 , 2
3

]
, we can assume that Wu(B ×

{0}) and Ws(B′ × {1}) intersect transversely for all B ⊂ Crit( f0) and B′ ⊂
Crit( f1) critical submanifolds of f0, f1 respectively. This is a weaker require-
ment than f being Morse-Bott-Smale.

We denote B̂0
i , B̂1

i the set of all critical points with index i of f0 and f1,
respectively. For critical submanifolds B0

i ⊂ B̂0
i , B1

i ⊂ B̂1
i , we define

MF(B0
i , B1

j ) :=
(

Wu(B0
i ) ⋔ Ws(B1

j )
)

/R.

MF(B0
i , B1

j ) is a quotient of a manifold by a free R-action, and hence a
manifold of dimension

λF̃
B0

i
− λF̃

B1
j
− 1 = i + 1 − j − 1 = i − j.

Theorem 2.19 can be applied for MF(B0
i , B1

j ) as well, giving a compactification
MF(B0

i , B1
j ) of MF(B0

i , B1
j ). We set the degree of MF(B0

i , B1
j ) to be i − j. The
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boundary operator d (in a setting analoguous to Definition 2.20) is defined
on MF(B0

i , B1
j ) by

d
(
MF(B0

i , B1
j )
)
= (−1)b0

i +i

(
i−1

∑
k=1

MF(B0
i , B̂0

k , B1
j )−

m

∑
k=j+1

MF(B0
i , B̂1

k , B1
j )

)
.

Similarly to Lemma 2.16, d decreases the degree of MF(B0
i , B1

j ) by 1.

We claim that d2
(
MF(B0

i , B1
j )
)
= 0. To show that, we first compute

d
(
MF(B0

i , B0
k , B1

j )
)
= d

(
MF(B0

i , B0
k)×B0

k
MF(B0

k , B1
j )
)

= (−1)i+b0
i ∑

k<s<i
∑
B0

s

MF(B0
i , B0

s , B0
k , B1

j )

+ (−1)i−k+b0
i −1+b0

k

k−1

∑
s=0

∑
B0

s

(−1)k+b0
kM(B0

i , B0
k , B0

s , B1
j )

− (−1)i−k+b0
i −1+b0

k

m

∑
s=j+1

∑
B1

s

(−1)k+b0
kM(B0

i , B0
k , B1

s , B1
j )

= (−1)i+b0
i

(
∑

k<s<i
∑
B0

s

MF(B0
i , B0

s , B0
k , B1

j )

−
k−1

∑
s=0

∑
B0

s

M(B0
i , B0

k , B0
s , B1

j )

+
m

∑
s=j+1

∑
B1

s

M(B0
i , B0

k , B1
s , B1

j )

)

= (−1)i+b0
i

(
∑

k<s<i
MF(B0

i , B̂0
s , B0

k , B1
j )

−
k−1

∑
s=0

M(B0
i , B0

k , B̂0
s , B1

j )

+
m

∑
s=j+1

M(B0
i , B0

k , B̂1
s , B1

j )

)

where the sum Bl
s runs over all critical submanifolds Bl

s ⊂ B̂l
s (l = 0, 1).

Similarly,

d
(
MF(B0

i , B1
k , B1

j )
)
= (−1)i+b0

i

(
∑
s<i

MF(B0
i , B̂0

s , B1
k , B1

j )
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−
m

∑
k+1

M(B0
i , B̂1

s , B1
k , B1

j )

+
k−1

∑
s=j+1

M(B0
i , B1

k , B̂1
s , B1

j )

)
.

Summing everything yields:

d2
(
MF(B0

i , B1
j )
)
= (−1)i+b0

i d

(
i−1

∑
k=1

MF(B0
i , B̂0

k , B1
j )−

m

∑
k=j

MF(B0
i , B̂1

k , B1
j )

)

=
i−1

∑
k=0

k−1

∑
s=0

[
MF(B0

i , B̂0
s , B̂0

k , B1
j )−MF(B0

i , B̂0
s , B̂0

k , B1
j )
]

+
i−1

∑
k=0

m

∑
s=j+1

[
MF(B0

i , B̂0
k , B̂1

s , B1
j )−MF(B0

i , B̂0
k , B̂1

s , B1
j )
]

+
m

∑
k=j+1

k−1

∑
s=j+1

[
MF(B0

i , B̂1
s , B̂1

k , B1
j )−MF(B0

i , B̂1
s , B̂1

k , B1
j )
]

= 0

We define C•(F) := C•( f0)⊕ C•+1( f1) and

∂F : Ck(F̃) → Ck−1(F̃)

by

∂F =

(
−∂ f0 ΦF

0 ∂ f1

)
where

ΦF : Ck( f0) → Ck( f1)

is defined on a generator σP : P → B̂0
i as follows:

We write Rj := P ×B̂0
i
MF(B̂0

i , B̂1
j ) and define

ΦF(σP) =
m

∑
j=0

σRj

and extended linearly. The identification between σRj and σ ∈ Ck( f1) is
defined using the degeneracy conditions in Definition 2.34. In addition, there
is such an identification by Lemma 2.36.

To show that ∂ f1 ◦ ΦF = ΦF ◦ ∂ f0 , it is sufficient to show on generators. We
compute both sides. To simplify the notation, we identify between an abstract
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topological chain and its domein. This is allowed because there is only one
map from every domain in the following computations.

Let
σP : P → B̂0

i ∈ Cp(B̂i).

We calculate φF ◦ ∂ f0(σP):

ΦF(∂ f0(P)) = ΦF

(
∂0(σP) +

i−1

∑
l=0

P ×B̂0
i
M(B̂0

i , B̂0
l )

)

=
m

∑
j=0

[
(−1)p+id(P)×B̂0

i
M(B̂0

i , B̂1
j )

+
i−1

∑
l=0

P ×B̂0
i
M(B̂0

i , B̂0
l , B̂1

j )

]
.

Now, we calculate ∂ f1 ◦ ΦF(σP). Recall that ∂ f1 =
⊕m

j=0 ∂j. We separate the
cases j = 0 and j ̸= 0.

∂0(ΦF(σP)) = (−1)p+i

(
m

∑
j=0

P ×B̂0
i
M(B̂0

i , B̂1
j )

)

= (−1)p+i

[
m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+ ∑
Bi

(−1)p+bi P ×Bi d
(
M(Bi, B̂1

j )
) ]

= (−1)p+i

[
m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+ ∑
Bi

(−1)p+bi
i−1

∑
l=0

(−1)i+bi P ×Bi M(Bi, B̂0
l , B̂1

j )

− ∑
Bi

(−1)p+bi
m

∑
l=j+1

(−1)i+bi P ×Bi M(Bi, B̂1
l , B̂1

j )

]

= (−1)p+i

[
m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+ ∑
Bi

i−1

∑
l=0

(−1)p+iP ×Bi M(Bi, B̂0
l , B̂1

j )

− ∑
Bi

m

∑
l=j+1

(−1)p+iP ×Bi M(Bi, B̂1
l , B̂1

j )

]
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= (−1)p+i
m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+
m

∑
l=0

P ×B̂i
M(B̂i, B̂0

l , B̂1
j )−

m

∑
l=j+1

P ×B̂i
M(B̂i, B̂1

l , B̂1
j )

where the sum ∑Bi
runs over all critical submanifolds Bi ∈ B̂i. If j ̸= 0, then

∂j(ΦF(σP)) = ∂j

(
m

∑
l=0

P ×B̂0
i
M(B̂0

i , B̂1
l )

)

=
m

∑
l=0

P ×B̂0
i
M(B̂0

i , B̂1
l , B̂1

l−j).

Hence,

∂ f1(Φ
F(σP)) =

m

∑
j=0

∂j

(
ΦF(σP)

)
= (−1)p+i

m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+
m

∑
l=0

P ×B̂i
M(B̂i, B̂0

l , B̂1
j )−

m

∑
l=j+1

P ×B̂i
M(B̂i, B̂1

l , B̂1
j )

+
m

∑
l=j+1

P ×B̂i
M(B̂i, B̂1

l , B̂1
j )

= (−1)p+i
m

∑
j=0

d(P)×B̂0
i
M(B̂0

i , B̂1
j )

+
m

∑
l=0

P ×B̂i
M(B̂i, B̂0

l , B̂1
j ).

Therefore

ΦF ◦ (−∂ f0) + ∂ f1 ◦ ΦF = ∂ f1 ◦ ΦF − ΦF ◦ ∂ f0 = 0

so ΦF is a chain morphism from f0 to f1.

In addition,

∂2
F̃ =

(
∂2

f0
ΦF ◦ (−∂ f0) + ∂ f1 ◦ ΦF

0 ∂2
f1

)
= 0

so ∂F is a boundary map. In particular, (C•(F), ∂F) is a chain complex. □
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2.4. Independence On The Function

Proof (Second Step) Let F̃ be as in the proof of the first step and let B ⊂ M
be a critical submanifold of f . Denote by Bi := B × {i} for i = 0, 1. Then for
every (x, s) ∈ M × (0, 1) we have

e−(x, s) = (x, 0), e+(x, s) = (x, 1)

and therefore M(B0, B1) = M(B0, B1) = (B × (0, 1))/R ∼= B. In addition,
for every critical submanifold B ̸= B′ ⊂ C we have M(B0, (B′)1) = ∅ (since
there is no flow line from B0 to (B′)1). Hence for every σ : P → B ∈ Ck(B)
we have

P ×B0 M(B0, B1) ∼= P

so ∂F̃(σ
0) = σ1 (where σi = σ × {i} for i = 0, 1). Hence ∂F̃ is the identity

morphism. □

Proof (Third Step) Let F be such a homotopy from f0 to f1, G a homotopy
from f1 to f2 and H from f0 to f2. Let K : M × [− 1

3 , 4
3 ]s × [− 1

3 , 4
3 ]t → R be as

follows:

• Ks,t = Fs for − 1
3 ≤ t ≤ 1

3 .

• Ks,t = Gt for 2
3 ≤ s ≤ 4

3 .

• Ks,t = Ht for − 1
3 ≤ t ≤ 1

3 .

• Ks,t = f2 for 2
3 ≤ s ≤ 4

3 .

Let g : R → R be defined as g(x) = C · (2x3 − 3x2) for some C > 0 (as in the
proof of the first step). For C sufficiently large, we have that:

• ∂K
∂s (x, s, t) + g′(s) < 0 for every x, s, t ∈ M × (0, 1)× [− 1

3 , 4
3 ].

• ∂K
∂t (x, s, t) + g′(t) < 0 for every x, s, t ∈ M × [− 1

3 , 4
3 ]× (0, 1).

Therefore, we set K̃ : M × R × R to be K(x, s, t) + g(s) + g(t). similarly to
the first step, the critical points are

Crit(K̃) = Crit( f0)× (0, 0) ∪ Crit( f1)× (0, 1)
∪ Crit( f2)× (1, 0) ∪ Crit( f2)× (1, 1)

and the indices are as follows:

• If B ⊂ Crit( f0) is a critical submanifold, then B′ := B× (0, 0) is a critical
submanifold of K̃ and λK̃

B′ = λ
f0
B + 2.

• If B ⊂ Crit( f1) is a critical submanifold, then B′ := B× (0, 1) is a critical
submanifold of K̃ and λK̃

B′ = λ
f1
B + 1.

• If B ⊂ Crit( f0) is a critical submanifold, then B′ := B × (1, 0) and
B′′ := B × (1, 0) are critical submanifolds of K̃ and λK̃

B′ = λ
f2
B + 1,

λK̃
B′′ = λ

f2
B .
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2.5. Homology Over A Field

As in the first step, using a little perturbation of K̃ where either 1
3 < s < 2

3
or 1

3 < t < 2
3 we can assume that Ws(B) and Wu(B′) intersect transversely

for every B, B′ ⊂ M critical submanifolds of K̃. Again, we can use 2.36 to
identify

C•+1(K̃) = C•−1( f0)⊕ C•( f1)⊕ C•( f2)⊕ C•+1( f2).

We define ∂K : C•+1(K̃) by using the first step twice, as it defines Morse-Bott
homology on homotopies. Then, ∂K has the matrix representation

∂K =


∂ f0 0 0 0
−ΦF −∂ f1 0 0
−ΦH 0 −∂ f2 0
ΦK ΦG id ∂ f2


where φF, ΦG, ΦH are defined as in the first step. The first step shows that
∂2

K = 0, which yields

ΦK ◦ ∂ f0 − ΦG ◦ ΦF − ΦH + ∂ f2 ◦ ΦK = 0

or
ΦK ◦ ∂ f0 + ∂ f2 ◦ ΦK = ΦG ◦ ΦF + ΦH

so ΦG ◦ ΦF and −ΦH are chain-homotopic, and so induce the same map on
homology (see [2, Proposition 2.12]). Since −ΦH and ΦH clearly induce the
same map on homology, the result follows. □

2.5 Homology Over A Field

Let F be a field. We can define the Morse-Bott complex over F by replacing
Ck( f ) with Ck( f ) ⊗ F. That is, Ck( f ; F) := Ck( f ) ⊗ F and ∂ : Ck( f ; F) →
Ck−1( f ; F) is defined on generators by

σ ⊗ 1 7→ ∂σ ⊗ 1

and extended linearly. Since ∂2(σ ⊗ 1) = 0 ⊗ 1 = 0, (Ck( f ; F)) is indeed a
chain complex.

Theorem 2.45 Let f0, f1 : M → R be two Morse-Bott-Smale functions. Then

Hk(C•( f0; F), ∂) ∼= Hk(C•( f1; F), ∂)

for every k ∈ N.

Proof The proof is identical to the proof of Theorem 2.44. □
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2.5. Homology Over A Field

Remark 2.46 Usually, the homology over a field is derived from the homology over
Z using the universal coefficient theorem for homology [2, Theorem 3A.3]. However,
the theorem requires the chain complex to be free, but the chain complex defined by
Definition 2.34 is not necessarily free (see Theorem 3.17 for example).

However, we can utilize the fact that the complex is the same as the Morse-Smale
chain complex if f is Morse-Smale (and, in particular, free) to show that the Morse
homology over a field is isomorphic to the singular homology. Since the homology is
independent of the function, it is true for Morse-Bott functions as well.

Theorem 2.47 Let f : M → R be Morse-Bott-Smale. Then

Hk(C•( f ; F), ∂) ∼= Hk(M, F)

for every k ∈ N.

Proof Assume first that f is Morse-Smale. In Example 2.41, we see that the
chain complex is free and so we can use the universal coefficient theorem. By
the universal coefficient theorem for homology [2, Theorem 3A.3], there is a
short exact sequence

0 → Hk(C•( f ), ∂)⊗ F → Hk(C•( f ; F), ∂) → Tor(Hn−1(C•( f ), ∂), F) → 0

and this sequence splits, so

Hk(C•( f ; F), ∂) ∼= (Hk(C•( f ), ∂)⊗ F)⊕ Tor(Hn−1(C•( f ), ∂), F).

On the other hand, the universal coefficient theorem also applies for Hk(M),
so

Hk(M; F) ∼= (Hk(M)⊗ F)⊕ Tor(Hn−1(M), F).

Since Hk(C•( f ), ∂) ∼= Hk(M) by Theorem 2.45, we get that Hk(C•( f ; F), ∂) ∼=
Hk(M; F).

If f is not Morse-Smale, there is always a Morse-Smale function g : M → R

[7, Theorem 3.1]. Since Hk(C•( f ; F), ∂) ∼= Hk(C•( f ; F), ∂) and Hk( f ; F) ∼=
Hk(g; F) by 2.45, the result follows. □

We will be mostly interested in the case where F = Z2.

Example 2.48 Let M = T2 = R2/Z2 with coordinate system induced from
R2 and let f : M → R be defined as f ([x, y]) = − cos 2πx.

The critical submanifolds of f are B̂0 = {[x, y] ∈ T2 | x = 0} ∼= S1 and
B̂1 = {[x, y] ∈ T2 | x = 1

2} ∼= S1
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2.5. Homology Over A Field

The complex can be pictured as:

. . . C1(B̂1)⊗ Z2 C0(B̂1)⊗ Z2 0

⊕ ⊕ ⊕

. . . C2(B̂0)⊗ Z2 C1(B̂0)⊗ Z2 C0(B̂0)⊗ Z2 0

∥ ∥ ∥

. . . C2( f ; Z2) C1( f ; Z2) C0( f ; Z2) 0

∂0 ∂0

∂1

∂0

∂1

∂0 ∂0 ∂0 ∂0

∂0 ∂ ∂ ∂

Each row calculates calculates the homology of B̂0 ∼= B̂1
∼= S1. Also,

M(B̂1, B̂0) = M(B̂1, B̂0) consists of two disjoint copies of S1.

Using the metric induced from R2, we can see that

e−(x, y) = (0, y), e+(x, y) = (
1
2

, y)

for every (x, y) ∈ T2 \ Crit( f ). Therefore, for every (σ : P → B̂1) ∈ Cp(B̂1),
P ×B̂1

M(B̂1, B̂0) is diffeomorphic to two disjoint copies of P. Therefore ∂1(σ)
consists of two identical maps, so ∂1(σ) = 0. Hence,

Hk(C•( f , Z2), ∂) =


Z2 k = 0, 2
Z2 ⊕ Z2 k = 1
0 k ̸= 0, 1, 2

.
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Chapter 3

Orthogonal Groups

In this chapter we compute the homology groups of SO(n) using the Morse-
Bott system developed in Chapter 2. We are going to use the Morse-Bott
function f : SO(n) → R, defined by f (X) = Xnn (the lower-right coordinate).
We show that the function is indeed Morse-Bott-Smale, with two critical
submanifolds, F0 and Fn−1, whose indices are 0 and n − 1 respectively. Our
main result is Theorem 3.18, which gives the short exact sequence

0 → Hk(SO(2n − 1)) → Hk(SO(2n)) → Hk−2n+1(SO(2n − 1)) → 0.

In addition, Theorem 3.23 gives the following recursive formula for the
homology groups over Z2 of SO(n):

Hk(SO(n); Z2) ∼= Hk(SO(n − 1); Z2)⊕ Hk−n+1(SO(n − 1); Z2).

This recursive formula is also proved in [2, Theorem 3D.1] and [8, Section 5].
In addition, it can be derived from [18, Theorem 3].

We denote by O(n) the group of all orthogonal matrices. That is,

O(n) :=
{

X ∈ Mn×n (R) | XXt = In
}

where Mn×n (R) denotes all the n × n matrices over R and In is the iden-
tity matrix. Note that O(n) is a Lie group of dimension n(n − 1)/2 [29,
Example 7.27]. Using the fact that

1 = det(In) = det(XXt) = det(X) · det(Xt) = det(X)2,

we get that det(X) = ±1 for every X ∈ O(n). We are interested in

SO(n) = {X ∈ O(n) | det(X) = 1}

which is an open subset (and hence, a full-dimensional submanifold) of O(n)
because det is a Lie group homomorphism.
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3.1. Linear functions on SO(n)

Let
GL(n, R) = {X ∈ Mn×n (R) | det X ̸= 0}

be the set of all invertible matrices and let Sym(n, R) be the submanifold
of GL(n, R) consisting of all symmetric matrices. Sym(n, R) has n(n + 1)/2
free coordinates and hence it is an n(n + 1)/2-dimensional submanifold of
GL(n, R). Since

(
AAt)t

=
(

At)t At = AAt, we have a well-defined smooth
function

ψ : GL(n, R) → Sym(n, R), ψ(X) = XXt

and O(n) = ψ−1(In). The differential of ψ (as a function GL(n, R) →
GL(n, R)) is (using Leibniz rule)

dψX(M) = XMt + MXt

and hence for X ∈ SO(n),

TXSO(n) = TXO(n) = ker dψX = {M ∈ Mn×n(R) | XMt + MXt = 0}.

In particular, TIn = {M ∈ Mn×n(R) | Mt + M = 0}.

We are going to use the Riemannian metric on SO(n) induced from GL(n, R).
That is, for M, N ∈ TXSO(n),

⟨M, N⟩ = tr(MtN) = tr(MNt) =
n

∑
i,j=1

MijNij.

3.1 Linear functions on SO(n)

In this section, we discuss properties of linear functions on SO(n). In partic-
ular, we give a condition for their critical points and compute the gradient of
those functions. This section is based on Section 3 of [8].

We say that a function f : SO(n) → R is linear if there exists a matrix
A ∈ Mn×n so that f (X) = fA(X) = tr(AtX). The differential of a linear
function f is (using linearity of the trace)

d fX(M) = tr(At M).

The gradient of f is

∇ f (X) =
1
2
(A − XAtX). (3.1)

Indeed,

X · ∇ f (X)t +∇ f (X) · Xt =
1
2
(XAt − AXt) +

1
2
(AXt − XAt) = 0
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3.1. Linear functions on SO(n)

so ∇ f (X) ∈ TXSO(n) and for every M ∈ TXSO(n),

⟨∇ f (X), M⟩ = tr(
1
2
(A − XAtX)t M) =

1
2

tr(At M − Xt AXt M)

=
1
2

tr(At M + Xt AMtX) = tr(At M) = d fX(M).

The next lemma gives us some conditions for critical points of f .

Lemma 3.1 The following are equivalent:

1. ∇ f (X) = 0

2. AtX = Xt A

3. AtX is symmetric.

Proof

∇ f (X) =
1
2
(

A − XAtX
)
= 0 ⇐⇒ A = XAtX ⇐⇒ Xt A = AtX.

This proves (1) ⇐⇒ (2). To see that (2) ⇐⇒ (3), observe that

(AtX)t = Xt A,

so AtX = Xt A if and only if AtX is symmetric. □

Example 3.2 We consider the case A = In. Then f (X) = tr(X) and the
critical points are the symmetric matrices in SO(n).

Example 3.3 Let A be a diagonal matrix with n distinct eigenvalues. That is,
Aij = 0 and Aii ̸= Ajj if i ̸= j. Then, for every X ∈ SO(n),(

AtX
)

ij =
n

∑
k=1

(
At)

ik Xkj = AiiXij.

and similarly, (
Xt A

)
ij =

n

∑
k=1

(
Xt)

ik Akj = Xij Ajj.

In particular, if X ∈ Crit( f ), then using the above lemma, AiiXij = Xij Ajj
for every 1 ≤ i, j ≤ n. This implies that Xij = 0 if i ̸= j (since Aii ̸= Ajj).
Therefore, the set of critical points is

Crit( f ) = {X ∈ SO(n) | Xii = ±1 for every 1 ≤ i ≤ j}
which is an discrete subset of SO(n). It can be shown that f is a Morse
function [18, Lemma 3] and that

#Critk( f ) = rankHk( f ; Z2)

for every k ≥ 0. Therefore, the mod 2 homology of SO(n) can be computed
using this f [18, Theorem 3]. We later show another way to compute these
homology groups (Theorem 3.23).
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3.2. Mapping Cone

3.2 Mapping Cone

In this section we recall the construction of a mapping cone of two chain
complexes (see Chapter 10 of [30] for a reference). Let C• = (C•, ∂C) and
D• = (D•, ∂D) be chain complexes and φ : C• → D• be a map of chain
complexes (i.e. φ ◦ ∂C = ∂D ◦ φ). The mapping cone of φ is the chain
complex, cone• = (C•−1 ⊕ D•, ∂) where

∂(c, d) = (−∂Cc, ∂Dd − φ(c)).

Lemma 3.4 cone• is a chain complex (i.e. ∂2 : cone• → cone•−2 is the zero map).

Proof

∂2(c, d) = ∂(∂Cc, ∂Dd − φ(c)) = (∂2
Cc, ∂2

Dd − ∂D φ(c)− φ(∂Cc)).

Since ∂2
C(c) = 0, ∂2

D(d) = 0 and ∂D φ(c)− φ(∂Cc) = 0, we have ∂2(c, d) = 0.□

Using the fact that cone is also a chain complex, we get that

0 → Dk
i−→ conek

j−→ Ck−1 → 0 (3.2)

(where i(d) = (0, d) and j(c, d) = −c) is a short exact sequence (SES). We
claim that the following diagram is commutative:

...
...

...

0 Dk conek Ck−1 0

0 Dk−1 conek−1 Ck−2 0

...
...

...

∂D ∂ −∂C

i

∂D

j

∂ −∂C

i

∂D

j

∂ −∂C

Indeed, ∂ ◦ i(d) = (0, ∂Dd) = i ◦ ∂Dd and

j ◦ ∂(c, d) = j(−∂Cc, ∂Dd − φ(c)) = ∂Cc = −∂C ◦ j(c, d).

Thus, Equation 3.2 is also an SES of chain complexes. By Theorem [2,
Theorem 2.16], an SES of chain complexes can be extended to a long exact
sequence (LES) of homology:

· · · → Hk+1(D) → Hk+1(cone) → Hk(C)
δ∗−→ Hk(D) → · · ·

where δ∗ : Hk(C) → Hk(D) is the connecting homomorphism.
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3.2. Mapping Cone

Lemma 3.5 δ∗ = φ∗ : Hk(C) → Hk(D)

Proof Let [c] ∈ Hk(C). Then j∗([−c, 0]) = [c], and

∂∗([−c, 0]) = [−∂Cc, φ(c)] = [0, φ(c)].

Now, φ(c) is a cycle because c is a cycle, so [φ(c)] ∈ Hk(D). Hence, by the
definition of δ∗ in [2, Theorem 2.16],

δ∗([c]) = [φ(c)] = φ∗(c). □

3.2.1 Simple Morse-Bott Functions

Let (M, g) be a closed m-dimensional Riemannian manifold and f : M → R

a Morse-Bott function. We say that f is simple if f has exactly two critical
submanifolds, F0 and Fn of indices 0 and n respectively (note that there is
always a submanifold of index 0, as f always has global minima).

Since Ws(F0), the stable manifold of F0, is full dimensional, Ws(F0) and Wu(x)
intersect transversely for every x ∈ Fn−1, and hence ( f , X) is a Morse-Bott-
Smale pair for every pseudo-gradient X (and in particular, for X = −∇ f ).

The complex of a simple Morse-Bott function f can be pictured as follows:

. . . Ck(Fn) . . . C0(Fn) 0

⊕ . . . ⊕ ⊕

. . . Ck+n(F0) . . . Cn(F0) Cn−1(F0) . . .

∥ . . . ∥ ∥

. . . Ck+n( f ) . . . Cn( f ) Cn−1( f ) . . .

∂0

∂n

∂0

∂n

∂0

∂n

∂0

∂n

∂0 ∂0 ∂0 ∂0 ∂0

∂ ∂ ∂ ∂ ∂

The chain complex (C•(Fn), ∂0) in the top row is identical up to a sign
(−1)k+n to the smooth singular N-cube chain complex, (S∞

• (Fn)/D∞
• (Fn), ∂),

as defined in Subsection 2.2.3. Hence,

Hk(C•(Fn), ∂0) = Hk(Fn)

and similarly,
Hk(C•(F0), ∂0) = Hk(F0).

Let σ ∈ Ck(Fn). By Lemma 2.31,

0 =
n

∑
j=0

∂j(∂n−j(σ)) = ∂0(∂n(σ)) + ∂n(∂0(σ)).
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3.3. A Morse-Bott function on SO(n)

Therefore, if we define ∂̃0 := −∂0 : Ck(Fn) → Ck−1(Fn), we get that

∂n ◦ ∂̃0 = ∂0 ◦ ∂n : Ck(Fn) → Ck+n−1(F0).

Thus,
∂n :

(
C•(Fn), ∂̃0

)
→ (C•+n−1(F0), ∂0)

is a chain map. Define the mapping cone

cone := cone(∂n) = C•−n+1(Fn)⊕ C•(F0).

In this case, C• = C•−n+1(Fn), D• = C•(F0) and φ = −∂n Note that

cone• = C•−n+1(Fn)⊕ C•(F0) = C•( f ).

The map
∂cone : cone• → cone•−1

is defined on generators by

∂cone(σP, σQ) = (−∂̃0σP, ∂0σQ + ∂nσP) = (∂0σP, ∂0σQ + ∂nσP)

and extended linearly. The boundary operator ∂cone has the same definition
as ∂ : C•( f ) → C•−1( f ) and hence ∂cone = ∂. Therefore,

Hk(cone, ∂cone) = Hk(C•( f ), ∂)

and since Hk(C•( f ), ∂) ∼= Hk(M) by Theorem 2.44,

Hk(cone, ∂cone) = Hk(M).

Hence, we get the long exact sequence

· · · → Hk(F0) → Hk(M) → Hk−n(Fn)
(∂n)∗−−→ Hk−1(F0) → · · · . (3.3)

3.3 A Morse-Bott function on SO(n)

In this section we look at the function f : SO(n) → R defined by f (X) = Xnn
(the lower-right entry of X). To show that f is Morse-Bott, we write f = p ◦ h
where p : SO(n − 1) → Sn−1 is the projection to the bottom row

p(X) = (Xn1, . . . , Xnn)

and h : Sn−1 → R is the height function h(x1, . . . , xn) = xn. It is well-known
that h is Morse, and p is a submersion. The next lemma states that the
composition is Morse-Bott.
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3.3. A Morse-Bott function on SO(n)

Lemma 3.6 Let M, N be manifolds of dimension m and n respectively. Let g :
M → N be a submersion and h : N → R a Morse function. Then the composition
f = g ◦ h : M → R is Morse-Bott.

Proof First, note that every x ∈ N is a regular value of g. In particular, critical
points of h are regular values of g. Therefore, B := g−1(x) is a submanifold
for every critical point x ∈ N of h.

Let p ∈ B. By the rank theorem [29, Theorem 4.12] there is a chart (U, φ) for
M centered at p ∈ M and a chart (V, ψ) for N centered at g(p) so that g has
a coordinate representation of the form

g(x1, . . . , xn, . . . xm) = (x1, . . . , xn).

Hence
d fp = dgp · dhg(p) = (dhg(p), 01×(m−n))

and

TpB = span
{

∂

∂xn+1
, . . . ,

∂

∂xm

}
.

Therefore,

Hessp( f ) =
(

Hessg(p)(h) 0
0 0(m−n)×(m−n)

)
.

and

νpB = span
{

∂

∂x1
, . . . ,

∂

∂xn

}
.

Therefore, the normal Hessian of f at p is

Hessν
p( f ) =

(
Hessg(p)(h)

)
.

which is non-degenerate because Hessg(p)(h) is non-degenerate. Therefore, f
is Morse-Bott. □

Using Equation 3.1, we can write the ∇ f (X) explicitly:

∇ f (X) =
1
2


−X1nXn1 . . . −X1nXn,n−1 −X1nXnn

...
. . .

...
...

−Xn−1,nXn1 . . . −Xn−1,nXn,n−1 −Xn−1,nXnn
−XnnXn1 . . . −XnnXn,n−1 1 − XnnXnn

 .

The next step is to find all critical points of f .

Lemma 3.7 X ∈ Crit( f ) if and only if Xnn = ±1.
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3.3. A Morse-Bott function on SO(n)

Proof If X ∈ Crit( f ), then (∇ f (X))nn = 1 − X2
nn = 0. Therefore Xnn = ±1.

On the other hand, if Xnn = ±1, then ∑n
i=1 X2

in ≥ X2
nn = 1. But since

X ∈ SO(n), ∑n
i=1 X2

in = 1. Hence Xin = 0 if i ̸= n. Similarly, Xni = 0 if i ̸= n.
Therefore, (∇ f (X))ij = 0 if (i, j) ̸= (n, n) and (∇ f (X))nn = 1 − X2

nn = 0.
Hence, X ∈ Crit( f ). □

Using the above lemma, we can see that f has two critical submanifolds. Let
F0 = {X ∈ SO(n) | Xnn = −1} and Fn−1 = {X ∈ SO(n) | Xnn = 1}. The
map i : SO(n − 1) → Fn−1 defined by

i(X) =

(
X 0
0 1

)
is a diffeomorphism. Similarly, we can define a diffeomorphism

j : SO(n − 1) → F0

by

j(X) =


−X11 . . . −X1,n−1 0
X21 . . . X2,n−1 0

...
. . .

...
...

Xn−1,1 . . . Xn−1,n−1 0
0 . . . 0 −1

 .

Therefore, F0 ∼= Fn−1
∼= SO(n − 1).

Since f (X) ∈ [−1, 1], the index of F0 is 0. The index of Fn−1 equals to

dim(SO(n))− dim(Fn−1) =
n(n − 1)

2
− (n − 1)(n − 2)

2
= n − 1.

Let X ∈ SO(n). Since
lim

t→±∞
f (φt(X)) = ∓1

and f is strictly decreasing along flow lines, there exists a unique t ∈ R so
that f (φt(X)) = 0. In addition, the only moduli space is M(Fn−1, F0) and so
there are no broken flow lines. Therefore, we can identify

M := M(Fn−1, F0) = M(Fn−1, F0) ∼= {X ∈ SO(n) | Xnn = 0}.

The groups Ck( f ) in the chain complex C•( f ), ∂ are

Ck( f ) =

{
Ck(F0) k < n − 1
Ck(F0)⊕ Ck−n+1(Fn−1) k ≥ n − 1
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and the complex can be pictured as follows:

. . . Ck(Fn−1) . . . C0(Fn−1) 0

⊕ . . . ⊕ ⊕

. . . Ck+n−1(F0) . . . Cn−1(F0) Cn−2(F0) . . .

∥ . . . ∥ ∥

. . . Ck+n−1( f ) . . . Cn−1( f ) Cn−2( f ) . . .

∂0

∂n−1

∂0

∂n−1

∂0

∂n−1

∂0

∂n−1

∂0 ∂0 ∂0 ∂0 ∂0

∂ ∂ ∂ ∂ ∂

The next result follows from the mapping cone.

Proposition 3.8 If k < n − 2 then

Hk(SO(n)) ∼= Hk(SO(n − 1))

and if k > dim(SO(n − 1)) + 1 then

Hk(SO(n)) ∼= Hk−n+1(SO(n − 1))

Proof If k < n − 2 then

Hk−n+1(Fn−1) = Hk−n+2(Fn−1) = 0.

Using Equation 3.3, we have the exact sequence

0 → Hk(SO(n)) → Hk(F0) → 0

and therefore Hk(SO(n)) ∼= Hk(F0) ∼= Hk(SO(n − 1)).

If k > dim(SO(n − 1)) + 1 then Hk(F0) = Hk+1(F0) = 0.Therefore, we have
the exact sequence

0 → Hk−n+1(Fn−1) → Hk(SO(n)) → 0

and so Hk(SO(n)) ∼= Hk−n+1(F0) ∼= Hk−n+1(SO(n − 1)). □

The next lemma gives an explicit formula for the flow of X ∈ M:

Lemma 3.9 Let X ∈ M. Then

φt(X)ij =


− tanh( t

2 ) i = n
Xij

cosh( t
2 )

i = n, j ̸= n or j = n, i ̸= n

Xij − XinXnj tanh
( t

2

)
i ̸= n ̸= j
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Proof We are going to solve the ODE

d
dt

φt(X) = −∇ f (X)

as a flow of a vector field in GL(n, R) ⊃ SO(n).

Observe that
d
dt
(φt(X)nn) =

1
2
(

φt(X)2
nn − 1

)
,

which is independent of the other coordinates. Solving the ODE with the
initial condition φ0(X)nn = 0 yields φt(X)nn = − tanh

( t
2

)
.

The next thing is to find φt(X)ij where i = n, j ̸= n or j = n, i ̸= n. The ODE
in this case is

d
dt
(φt(X)ij) = −1

2
φt(X)nn φt(X)ij =

1
2

φt(X)ij tanh
(

t
2

)
with the initial condition φ0(X)ij = Xij and so the solution is

φt(X)ij =
Xij

cosh
( t

2

) .

If i ̸= n ̸= j, then

d
dt
(φt(X)ij) =

1
2
− φt(X)in φt(X)nj = −

XinXnj

2 cosh2 ( t
2

)
and φ0(X)ij = Xij. Integrating yields φt(X)ij = Xij − XinXnj tanh

( t
2

)
□

In particular, we have a very nice formula for the beginning map

e− : M → Fn−1

from Theorem 2.5:

e−(X) =


X11 − X1nXn1 . . . X1,n−1 − X1nXn,n−1 0

...
. . .

...
...

Xn−1,1 − Xn−1,nXn1 . . . Xn−1,n−1 − Xn−1,nXn,n−1 0
0 . . . 0 1


Using this explicit formula for the flow φt(X), we can also characterize the
moduli space M = M(Fn−1, F0).

Lemma 3.10 The map ψ : M → Fn−1 × Sn−2 given by

ψ(X) = (e−(X), (X1n, . . . , Xn−1,n))

is a diffeomorphism.
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Proof First, e− is smooth by Theorem 2.5 so ψ is smooth. Let

Y ∈ Fn−1
∼= SO(n − 1)

and v = (v1, . . . , vn−1) ∈ Rn−1. We claim that ψ is a bijection and

ψ−1(Y, v) =


Y11 − v1w1 . . . Y1,n−1 − v1wn−1 v1

...
. . .

...
...

Yn−1,1 − vn−1w1 . . . Yn−1,n−1 − vn−1wn−1 vn−1
−w1 . . . −wn−1 0


where w = v · Y (i.e. wj = ∑n−2

k=1 Ykjvk). Multiplying both sides by Yt = Y−1

yields v = wYt (so vi = ∑n−2
k=1 Yikwk).

Indeed, direct calculation gives that

(ψ ◦ ψ−1)(Y, v) = (Y, v)

and
ψ−1(ψ(X)) = X.

It remains to show that X = ψ−1(Y, v) ∈ SO(n). We first show that XXt = I.
First, since v ∈ Sn−2, w = vYt ∈ Sn−2 and hence

(XXt)nn =
n−1

∑
j=1

w2
j = 1.

If i < n, then

(XXt)in = (XXt)ni =
n−1

∑
k=1

(Yik − viwk) · wk = vi − vi = 0.

If i ̸= n ̸= j then

(XXt)ij =
n−1

∑
k=1

(Yik − viwk)(Yjk − vjwk) + vivj

=
n−1

∑
k=1

(YikYjk − Yikwkvj − Yjkwkvi + vivjw2
k)

= δij − 2vivj + 2vivj = δij.

Hence, XXt = I and so X ∈ O(n). Since ψ−1(Fn−1) is connected and

ψ−1(Fn−1) ∩ SO(n − 1) ̸= ∅,

we get that X ∈ SO(n). Hence, ψ is a bijection M → Fn−1 × Sn−2. Since ψ
and ψ−1 are smooth, ψ is a diffeomorphism. □
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Corollary 3.11 For every σP ∈ S∞
k (Fn−1), the map ψP : P ×Fn−1 M → P × Sn−2

given by
ψ(x, X) = (x, (X1n, . . . , Xn−1,n))

is a diffeomorphism.

Proof Recall that

P ×Fn−1 M = {(x, X) ∈ P ×M | σP(x) = e−(X)}
∼= {(x, ψ(X)) | (x, X) ∈ P ×M, σP(x) = e−(X)} .

Now, ψ(X) = (e−(X), (X1n, . . . , Xn−1,n)) and e−(X) is uniquely determined
by σP(x). Therefore,

P ×Fn−1 M ∼= {(x, ψ(X)) | (x, X) ∈ P ×M, σP(x) = e−(X)}
∼= {(x, (X1n, . . . , Xn−1,n)) | (x, X) ∈ P ×M, σP(x) = e−(X)} .

□

We are now going to find a symmetry on SO(n) that is invariant under the
beginning and endpoint maps. More precisely, for every X ∈ SO(n) \ Crit( f )
we find X ̸= X̃ ∈ SO(n) \ Crit( f ) such that ˜̃X = X and

e+(X̃) = e+(X), e−(X̃) = e−(X).

Definition 3.12 Let X ∈ SO(n). We can write X as

X =

(
U v
w x

)
where U ∈ Mn−1([−1, 1]), vt, w ∈ [−1, 1]n−1, x ∈ [−1, 1] and define

X̃ :=
(

U −v
−w x

)
Lemma 3.13 Let X ∈ SO(n). Then X̃ ∈ SO(n).

Proof First, det(X̃) = det(X) = 1 since a row and a column are multiplied
by −1. It remains to show that X̃X̃t = I. Indeed,

(
XX̃t)

ij =
n

∑
k=1

X̃ikX̃jk =

{
∑n

k=1 XikXjk = δij i, j ̸= n or i = j = n,
−∑n

k=1 XikXjk = 0 else. □

Lemma 3.14 e−(X) = e−(X̃) and e+(X) = e+(X̃).

59



3.3. A Morse-Bott function on SO(n)

Proof Let φt be the flow of −∇ f and write

φt(X) =

(
Ut vt
wt xt

)
.

Since

∇ f (X̃) =
1
2


−X̃1nX̃n1 . . . −X̃1nX̃n,n−1 −X̃1nX̃nn

...
. . .

...
...

−X̃n−1,nX̃n1 . . . −X̃n−1,nX̃n,n−1 −X̃n−1,nX̃nn
−X̃nnX̃n1 . . . −X̃nnX̃n,n−1 1 − X̃nnX̃nn



=
1
2


−X1nXn1 . . . −X1nXn,n−1 X1nXnn

...
. . .

...
...

−Xn−1,nXn1 . . . −Xn−1,nXn,n−1 Xn−1,nXnn
XnnXn1 . . . XnnXn,n−1 1 − XnnXnn

 = ∇̃ f (X)

we get that φt(X̃) = φ̃t(X). That is,

φt(X̃) =

(
Ut −vt
−wt xt

)
.

Using the fact that
lim

t→±∞
xt = ∓1,

we get that limt→±∞ vt = limt→±∞ wt = 0 and the result follows. □

Corollary 3.15 Let σP : P → Fn−1 be a singular Cp-space. Let

(x, X) ∈ P ×Fn−1 M = {(x, X) ∈ P × M | σP(x) = e−(X)} .

Then (x, X̃) ∈ P ×Fn−1 M.

Let X ∈ M, and write ψ(X) = (Y, v) ∈ Fn−1 × Sn−2. Then ψ(X̃) = (Y,−v).
This means that

ψ

(
˜ψ−1(Y, v)

)
= (Y,−v).

Using the above lemma, e+ has a factorization

e+ : M
∼=−→ Fn−1 × Sn−2 → Fn−1 × RPn−2 → F0.

The next lemma provides a powerful tool to show that the map

(∂n−1)∗ : Hp(Fn−1) → Hp+n−2(F0)

is the zero map in some cases.
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Lemma 3.16 Let σk : Pk → Fn−1 be singular Cp-spaces and let σ := ∑k nkσk ∈
Cp(Fn−1) be a cycle. Then there exists a p-dimensional CW-complex P′, a smooth
singular chain in σ′ ∈ Sp+n−2(P′ × Sn−2) and a map

φ : P′ × Sn−2 (x,v) 7→(x,[v])−−−−−−−→ P′ × RPn−2 → F0

so that
∂n−1(σ)− φ∗

(
σ′) ∈ D∞

p+n−2(F0).

Proof Let σk : Pk → Fn−1 be singular Cp-spaces and let ∑k nkσPk ∈ S∞
p (Fn−1)

be a cycle. The process described in [2, Pages 108-109] can be applied
analoguously for p-faces of IN , giving a CW-complex P′ consists of p-faces
glued along parts of the boundary, a singular cycle ∑k nkσ′

k ∈ Sp(P′) and a
continuous map ξ : P′ → Fn−1 such that

∑
k

nk(ξ ◦ σ′
k) = ∑

k
nkσk.

Note: Hatcher’s book uses simplices for singular homology, so the process
yields a p-dimensional simplicial complex. We use cubes, so applying the
analoguous process yields a p-dimensional CW-complex.

Let R := P′ ×Fn−1 M ∼= P′ × Sn−2 and define

σR : P′ ×Fn−1 M
π2−→ M e+−→ F0.

For every k, write Rk = Pk ×Fn−1 M. Then ∂n−1(σk) = σRk : Rk → F0 is the
map

σR : Pk ×Fn−1 M
π2−→ M e+−→ F0.

By Lemma 2.36, for every k there is a smooth singular chain ∑αk
nαk σαk ∈

Sp+n−2(R) such that

σRk − ∑
αk

nαk(σRk ◦ σαk) ∈ D∞
p+n−2(F0).

Since Rk
∼= Pk × Sn−2 and R = P′ × Sn−2, one can identify Rk

(σ′
k×id)

↪−−−−→ R and
so σR|Rk

= σRk . Therefore, we have a smooth singular chain

∑
k

(
nk ∑

αk

nαk σαk

)
∈ Sp+n−2(R)

such that

∑
k

nkσRk − ∑
k

(
nk ∑

αk

nαk (σR ◦ σαk)

)
∈ D∞

p+n−2(F0)
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which means

∂n−1

(
∑

k
nkσk

)
− (σR)∗

(
∑

k
nk ∑

αk

nαk σαk

)
∈ D∞

p+n−2(F0).

Now, because the map X 7→ X̃ corresponds to the mapping to the map
(x, v) 7→ (x,−v) in R ∼= P × Sn−2, and since e+(X) = e+(X̃),

σR(x, v) = σR(x,−v).

Hence, σR has a factorization

σR : P′ × Sn−2 → P′ × RPn−2 → F0

and we complete the proof by taking φ = σR. □

Note: Although the Morse-Bott homology is defined only on compact oriented
manifolds, the singular N-cube homology is defined on every manifold, and
in particular, non-orientable manifolds.

3.3.1 Homology Groups Of SO(2n)

In this subsection we focus on the even case, which is easier using the fact
that the map from S2n to S2n which sends x 7→ −x is orientation reversing.

Theorem 3.17 For 0 ≤ k ≤ (2n−1)(2n−2)
2 , the map

∂2n−1 + ∂2n−1 : Ck(F2n−1) → Ck+2n−2(F0)

is the zero map.

Proof Let R := P ×F2n−1 M ∈ Ck+2n−2 and let σR : R → F0 be the correspond-
ing element in Ck+2n−2(F0). Since R ∼= P × S2n−2 by Corollary 3.11, the map
α : R → R given by

α(Y, v) = (Y,−v)

is an orientation-reversing diffeomorphism on R because the map v 7→ −v is
orientation reversing on S2n−2.

Let X = ψ−1(Y, v). Then X̃ = ψ−1(Y,−v) = ψ−1(α(Y, v)). Since

σR(X) = σR(X̃),

we get that σR ◦ α = σR.

Write d(R) = ∑j njRj. Then (using the notations of Definition 2.34)

∂0σR ◦ α = (−1)k+2n−2 ∑
j

nj (σR ◦ α)|α−1(Rj)
= (−1)k ∑

j
njRj = ∂0σR.
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Therefore, ∂0σR ◦ α = ∂0σR. By condition (3) of degeneracy in Definition 2.34,
we get that σR + σR ∈ D∞

p (F0) and thus

(∂2n−1 + ∂2n−1)(P) = σR + σR ∈ D∞
p (F0).

Since Ck+2n−1(F0) = S∞
k+2n−2(F0)/D∞

k+2n−2(F0) we get the result. □

In addition, using Lemma 3.16 and the long exact sequence in 3.3, we can get
a short exact sequence on homology in the even case:

Theorem 3.18 For every k ∈ N there is a short exact sequence

0 → Hk(SO(2n − 1)) i∗−→ Hk(SO(2n))
j∗−→ Hk−2n+1(SO(2n − 1)) → 0 (3.4)

where i∗ and j∗ are the maps from the mapping cone.

Proof Let σ ∈ Cp(F2n−1) be a cycle. By Lemma 3.16, there is a p-dimensional
CW-complex P′, a map

φ : P′ × S2n−2 → P × RP2n−2 → F0

and a smooth singular chain σ′ ∈ Sp+2n−2(P′ × S2n−2) such that

∂2n−1(σ)− φ∗(σ
′) ∈ D∞

p+2n−2(F0).

By Künneth formula [2, Theorem 3B.6] there is a short exact sequence

0 →
⊕

i

Hi(P′)⊗ Hp+2n−2−i(RP2n−2) → Hp+2n−2(P′ × RP2n−2)

→
⊕

i

Tor(Hi(P′), Hp+2n−3−i(RP2n−2)) → 0.

Now, since P′ is a p-dimensional CW-complex, Hk(P′) = 0 for k > p. In
addition, Hk(RP2n−2) = 0 for every k ≥ 2n − 2, as it is a non-orientable
(2n − 2)-dimensional manifold. Therefore Hi(P′)⊗ Hp+2n−2−i(RP2n−2) = 0
for every i. In addition, the only possible i for which both Hi(P′) ̸= 0 and
Hp+2n−3−i(RP2n−2) ̸= 0 is i = p.

Moreover, Hp(P′) has no torsion because there are no (p+ 1)-cells, and hence
([2, Proposition 3A.5]),

Tor(Hp(P), H2n−3(RP2n−2)) = 0

Thus, Hp+n−2(P × RP2n−2) = 0. The map φ : P′ × Sn−2 → F0 induces a map
on homology

φ∗ : Hp+2n−2(P′ × Sn−2) → Hp+2n−2(P′ × RPn−2) → Hp+2n−2(F0).

63



3.3. A Morse-Bott function on SO(n)

Since Hp+2n−2(P′ × RPn−2) = 0, φ∗ is the zero map. Therefore,

φ∗
([

σ′]) = 0 ∈ Hp+2n−2(F0)

and since
∂2n−1(σ)− φ∗(σ

′) ∈ D∞
p+2n−2(F0),

also [∂2n−1(σ)] = 0 ∈ Hp+2n−2(F0). Hence,

(∂2n−1)∗ : Hp(F2n−1) → Hp+2n−2(F0)

is the zero map.

Recall the long exact sequence 3.3:

· · · (∂2n−1)∗−−−−→ Hk(F0)
i∗−→ Hk(M)

j∗−→ Hk−2n+1(F2n−1)
(∂2n−1)∗−−−−→ Hk−1(F0) → · · ·

Then (∂2n−1)∗ = 0. This means that

i∗ : Hk(SO(2n − 1)) → Hk(SO(2n))

is injective and

j∗ : Hk(SO(2n)) → Hk−2n+1(SO(n − 1))

is surjective. Hence, the sequence

0 → Hk(F0)
i∗−→ Hk(M)

j∗−→ Hk−2n+1(F2n−1) → 0

is exact. Since F0 ∼= F2n−1
∼= SO(2n − 1) and M = SO(2n), the result

follows. □

Corollary 3.19 If Hk−2n+1(SO(2n − 1)) is free, then

Hk(SO(2n)) ∼= Hk(SO(2n − 1))⊕ Hk−2n+1(SO(2n − 1)).

In particular,

H2n−1(SO(2n)) ∼= H2n−1(SO(2n − 1))⊕ Z.

We need the following simple lemma for the corollary:

Lemma 3.20 Let
0 → A → B

j−→ C → 0

be a short exact sequence of R-modules. Assume that C is a free R-module. Then the
sequence splits, that is, B = A ⊕ C.
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Proof Let {ci}i∈I be a basis for C. Define s : C → B by s(ci) = bi ∈ j−1(ci)
(j−1(ci) is not empty because j is surjective) for every i ∈ I and extend
linearly. Then j ◦ s : C → C is the identity map, so the sequence splits by [2,
Splitting Lemma]. □

Proof (proof of 3.19) If Hk−2n+1(SO(n − 1)) is free then the SES splits.

In addition, H0(SO(2n − 1)) ∼= Z because SO(2n − 1) is connected. Hence,

H2n−1(SO(2n)) ∼= H2n−1(SO(2n − 1))⊕ Z. □

Example 3.21 Let M = SO(4). Since SO(3) ∼= RP3 [2, Pages 293-294], its
homology groups are:

Hk(SO(3)) =


Z k = 0, 3
Z2 k = 1
0 else

.

By Proposition 3.8, Hk(SO(4)) ∼= Hk(SO(3)) for k ≤ 2 and Hk(SO(4)) ∼=
Hk−3(SO(3)) for k ≥ 4. Therefore, the only remaining case is k = 3. By
Theorem 3.18, there is a short exact sequence

0 → H3(SO(3)) i∗−→ H3(SO(4))
j∗−→ H0(SO(3)) → 0

and since H0(SO(3)) ∼= H3(SO(3)) ∼= Z, H0(SO(3)) is free and by Corollary
3.19,

H3(SO(4)) ∼= H3(SO(3))⊕ H0(SO(3)) ∼= Z ⊕ Z.

Therefore, the homology groups of SO(4) are:

Hk(SO(4)) =


Z k = 0, 6
Z2 k = 1, 4
Z ⊕ Z k = 3
0 else

.

3.3.2 Homology Over Z2

The long exact sequence of homology in 3.3 can be obtained the same way
also over Z2:

· · · (∂n−1)∗−−−−→ Hk(F0; Z2)
i∗−→ Hk(M; Z2)

j∗−→ Hk−n(Fn; Z2)
(∂n−1)∗−−−−→ Hk−1(F0; Z2) → · · · .
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In our case, M = SO(n) and F0 ∼= Fn−1
∼= SO(n − 1). Hence, we can write

the following exact sequence as follows:

· · · (∂n−1)∗−−−−→ Hk(SO(n − 1); Z2)
i∗−→ Hk(SO(n); Z2)

j∗−→ Hk−n(Fn; Z2)
(∂n−1)∗−−−−→ Hk−1(SO(n − 1); Z2) → · · · .

Similarly to Theorem 3.18, we can derive an SES for homology over Z2:

Theorem 3.22 For every k ∈ N there is a short exact sequence

0 → Hk(SO(n − 1); Z2)
i∗−→ Hk(SO(n); Z2)

j∗−→ Hk−n+1(SO(n − 1); Z2) → 0
(3.5)

where i∗ and j∗ are the maps from the mapping cone.

Proof Let σ ∈ Cp(Fn−1) be a cycle. By Lemma 3.16, there is a p-dimensional
CW-complex P′, a map

φ : P′ × Sn−2 (x,v) 7→(x,[v])−−−−−−−→ P × RPn−2 → F0

and a smooth singular chain σ′ ∈ Sp+n−2(P′ × Sn−2) such that

∂n−1(σ)− φ∗(σ
′) ∈ D∞

p+n−2(F0).

By Künneth formula for coefficients in a field [2, Corollary 3B.7], there is an
isomorphism

h :
⊕

i

Hi(P′; Z2)⊗ Hp+n−2−i(Sn−2; Z2) → Hp+n−2(P′ × Sn−2; Z2).

Since
Hk(P′; Z2) = 0

for every k > p and
Hk(Sn−2; Z2) = 0

for every k > n − 2, we get that

Hp(P′; Z2)⊗ Hn−2(Sn−2; Z2) ∼= Hp+n−2(P′ × Sn−2; Z2).

Similarly,

Hp(P′; Z2)⊗ Hn−2(RPn−2; Z2) ∼= Hp+n−2(P′ × RPn−2; Z2).

The map ξ : Sn−2 → RPn−2 defined by ξ(v) = [v] has degree 0 mod 2, and
hence

ξ∗ : Hn−2(Sn−2) → Hn−2(RPn−2)
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is the zero map. Using the isomorphisms from Künneth formula, the map

(id × ξ)∗ : Hp(P′; Z2)⊗ Hn−2(Sn−2; Z2) → Hp(P′; Z2)⊗ Hn−2(RPn−2; Z2)

is also the zero map. Since φ∗ can be written as φ∗ = (id × ξ)∗φ′
∗, φ∗ is the

zero map as well.

Since ∂n−1(σ)− φ∗(σ′) ∈ D∞
p+n−2(F0),

(∂n−1)∗ (σ) = φ∗(σ
′) = 0 ∈ Hp+n−2(F0; Z2)

so (∂n−1)∗ : Hp(Fn−1; Z2) → Hp+n−2(F0, Z2) is the zero map.

We have the long exact sequence

· · · (∂n−1)∗−−−−→ Hk(SO(n − 1); Z2)
i∗−→ Hk(SO(n); Z2)

j∗−→ Hk−n(Fn; Z2)
(∂n−1)∗−−−−→ Hk−1(SO(n − 1); Z2) → · · · .

Therefore, the map

i∗ : Hk(SO(n − 1)) → Hk(SO(n))

is injective and the map

j∗ : Hk(SO(n)) → Hk−n+1(SO(n − 1))

is surjective. Hence, the sequence

0 → Hk(SO(n − 1); Z2)
i∗−→ Hk(SO(n); Z2)

j∗−→ Hk−n+1(SO(n − 1); Z2) → 0

is exact. □

Now, Hk−n+1(SO(n − 1); Z2) is a vector field over Z2, so it is a free Z2-
module. Using Lemma 3.20, we get:

Theorem 3.23

Hk(SO(n); Z2) ∼= Hk(SO(n − 1); Z2)⊕ Hk−n+1(SO(n − 1); Z2).

This theorem is already known. The proof here is very similar to the one
in [8, Section 5], where they used the same Morse-Bott function but with
different system. There is a proof using cell structure in Hatcher’s book [2,
Theorem 3D.1], and it can be also derived from 3.3 using [18, Theorem 3].
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